

Influence of neighbouring base sequences on the mutagenesis induced by 7,8-dihydro-8-oxoguanine in yeast

Chin-Wei Yung, Yoji Okugawa, Chie Otsuka¹,
 Keinosuke Okamoto, Sakae Arimoto, David Loakes²,
 Kazuo Negishi³ and Tomoe Negishi*

Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan, ¹Department of Biochemistry, Shujitu University School of Pharmacy, 1-6-1 Nishigawara, Okayama 703-8516, Japan, ²Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and ³Department of Immunobiology, Nihon Pharmaceutical University, 10281 Komuro, Ina, Saitama 362-0806, Japan

We have analysed the influence of neighbouring base sequences on the mutagenesis induced by 7,8-dihydro-8-oxoguanine (8-oxoG or G°), a typical oxidative lesion of DNA, using the yeast oligonucleotide transformation technique. Two oligonucleotides, oligo-CCG° and oligo-CCG°, each possessing a single 8-oxoG residue and represented by the sequences 5'-CCG°-3' and 5'-CCG°-3', respectively, were introduced into a chromosome of *Saccharomyces cerevisiae* and their mutagenic potentials were compared. In a wild-type strain, 8-oxoG showed very weak mutagenic potential in both cases. However, the lesion in 5'-CCG°-3' can cause efficient G-to-T transversion in a strain lacking the *rad30* gene which encodes yeast DNA polymerase η (Ypol η). To explore the properties associated with this translesion synthesis (TLS), the same two oligonucleotides possessing an 8-oxoG were used as templates for a standing-start primer extension assay, and the nucleotide incorporation opposite 8-oxoG was investigated. We found that dATP incorporation opposite 8-oxoG with Ypol η was low for both sequences. In particular, very low dATP incorporation was observed for the 5'-CCG°-3' sequence. These results account for the efficient inhibition of mutagenesis by Ypol η . TLS plays an important role in one DNA sequence in terms of avoiding mutagenesis induced by 8-oxoG in yeast. In contrast, human yeast DNA polymerase η showed higher dATP incorporation rates even with the 5'-CCG°-3' sequence.

Introduction

Oxidative damage can contribute significantly to the distortion of stable DNA conformations, as well as in disturbing genomic stability. 7,8-Dihydro-8-oxoguanine (8-oxoG or G°) (1–3) is one of the most widely studied oxidative lesions of DNA that can result from direct intracellular metabolic reactions (4) and oxidative stresses such as ionizing radiation and cigarette smoking (5,6). DNA polymerases can misincorporate adenine in lieu of cytosine opposite 8-oxoG residues at different efficiencies (7–9). This misincorporation yields GC-to-AT transversion mutations which appear to be associated with ageing (10), breast cancer (11) and other diseases (12,13).

Therefore, suppression of such mutations would be beneficial for the prevention of these disorders. To combat the action of 8-oxoG, cells repair the lesion through base excision repair (14–16) using 8-oxoguanine-DNA glycosylase, OGG1 (17,18), or via the nucleotide excision repair pathway. The lesions that escape the repair processes may be bypassed by translesion synthesis (TLS) during DNA replication (19). The bypass is carried out either error free or error prone, depending on the properties of the polymerases and type of DNA damage. It has been reported that the yeast DNA polymerase η (Ypol η) can bypass 8-oxoG by inserting the correct dCTP opposite the lesion in an efficient and accurate manner (20,21).

Since the 1980s, it has been shown that the potential of DNA lesions to induce mutations is influenced by the sequence context adjacent to the lesion (22,23). Using several repair enzymes (24–26) and replication polymerases (27,28), the effects of nucleotide sequence near the lesion on mutation frequencies have been widely studied, although few rules regarding sequence dependence have been found since the effects vary depending on the adduct, polymerase and other as yet undefined factors. We developed a method to analyse nucleotides incorporated opposite DNA lesions during translesion DNA synthesis (29,30) using a yeast oligonucleotide transformation approach (31). In this assay, transformants can be obtained only if the transforming oligonucleotide is used as a template for translesion DNA synthesis after its incorporation into chromosomal DNA. Therefore, the bases incorporated opposite the lesion can be estimated by sequence analysis of the transformants. In the present study, to investigate whether the translesion ability of the enzymes is affected by the nucleotide at the 5'-flanking position next to the lesion, we examined the mutagenic activity of oligonucleotides containing dGTP or dCTP at the 5'-flanking position (oligo-CCG° or oligo-CCG°) of 8-oxoG (G°). The G-to-T transversion mutation in oligo-CCG° increased significantly in the *rad30* Δ mutant compared to the wild-type strain, while oligo-CCG° did not show this change. In order to determine which nucleotide was incorporated opposite 8-oxoG, a standing-start primer extension assay was performed using Ypol η , human DNA polymerase η (Hpol η) and *Escherichia coli* polymerase I without 5' to 3' exonuclease activity (KFexo⁻). The results showed that the error-free manner of Ypol η during 8-oxoG bypass was influenced by the nucleotide located at the 5'-flanking position next to the lesion.

Materials and Methods

Yeast strains

Saccharomyces cerevisiae strain B7528 (MAT α *cyc1-31 cyc7-67 lys5-10 ura3-52*) was obtained from Dr Fred Sherman of Rochester University (31), and the *rad30* Δ (MAT α *cyc1-31 cyc7-67 lys5-10 ura3-52 rad30::kanMX4*) mutant as previously reported (32).

*To whom correspondence should be addressed. Tel: +81 86 251 7946; Fax: +81 86 251 7926; Email: isaka@pheasant.pharm.okayama-u.ac.jp

Oligonucleotides

Oligonucleotides containing 8-oxoG used for yeast transformation were prepared using 8-oxodG amidite obtained from Glen Research Corp. (Sterling, VA) and purified by high-performance liquid chromatography, or purchased from JbioS (Saitama, Japan). The sequences of the oligonucleotides used for transformation and standing-start primer extension are shown in Table I.

Oligonucleotide transformation and sequence analysis of transformants

The transformation was performed as previously described (29,30). Briefly, 300 pmol of 26-meric oligonucleotides were introduced into competent yeast cells by electroporation and treated cells were plated onto YPD plates. Following incubation at 30°C for 5–6 days, Cyc1⁺ transformants were obtained as overgrown colonies on a lawn of Cyc1-deficient cells and were further selected on YPG plates. The sequences of the reverted CYC1 gene were determined with DNA extracted from the transformants.

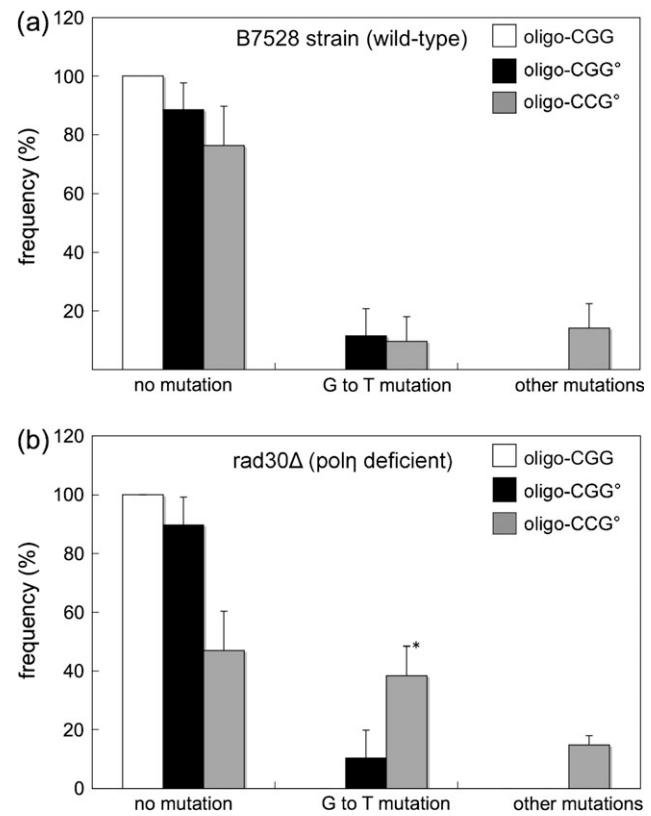
DNA polymerase assays

8-OxoG bypass assays were performed using the exonuclease-deficient Klenow fragment of *E. coli* DNA polymerase I (KFexo⁻, New England Biolabs, Hitchin, MA) and Ypol η and Hpol η (Enzymax, Lexington, KY). 5'-³²P-labelled primer 5'-GAACCGGCCCTT-3' (3 pmole) was annealed to 6 pmole of templates in 10 μ l of 100 mM NaCl by heating at 85°C for 5 min, followed by cooling to 25°C for over 2.5 h. In the assay with KFexo⁻, a reaction mixture (10 μ l) containing 25 nM template primer, 75 nM dNTP, 0.075 nM KFexo⁻, 2.5 mM Tris-HCl (pH 7.4), 0.01 mM ethylenediaminetetraacetic acid (EDTA), 0.1 mM dithiothreitol (DTT) and 5% glycerol was incubated for 10 min after pre-incubation for 2 min at 37°C without dNTP. In the reaction with Ypol η , a template primer (14 nM) was incubated with Ypol η (2.1 nM) in 25 mM potassium phosphate buffer (pH 7) containing 10 μ M dNTP, 5 mM MgCl₂, 5 mM dithiothreitol and 10 μ g/ml bovine serum albumin at 30°C for 30 min. The reaction was initiated by mixing with dNTP. For Hpol η , a 10 μ l reaction mixture containing 12.8 nM Hpol η , 14 nM template primer, 25 mM KPO₄ buffer (pH 7), 5 mM MgCl₂, 5 mM DTT, 10 μ g/ml BSA and 10% glycerol was incubated for 10 min at 37°C after pre-incubation as for the KFexo⁻ assay. The reactions were terminated by the addition of 10 μ l of stop solution (88.25% formamide, 0.05% bromophenol blue and 20 mM EDTA). Samples were heated at 90°C for 3 min, cooled on ice and applied to 15% polyacrylamide gels containing 8 M urea. Following electrophoresis at 1000 V for 3 h and subsequent autoradiography, the extent of incorporation was quantified by measuring the intensity of each band using an Image Analyzer BAS-1800II (FujiFilm, Tokyo, Japan).

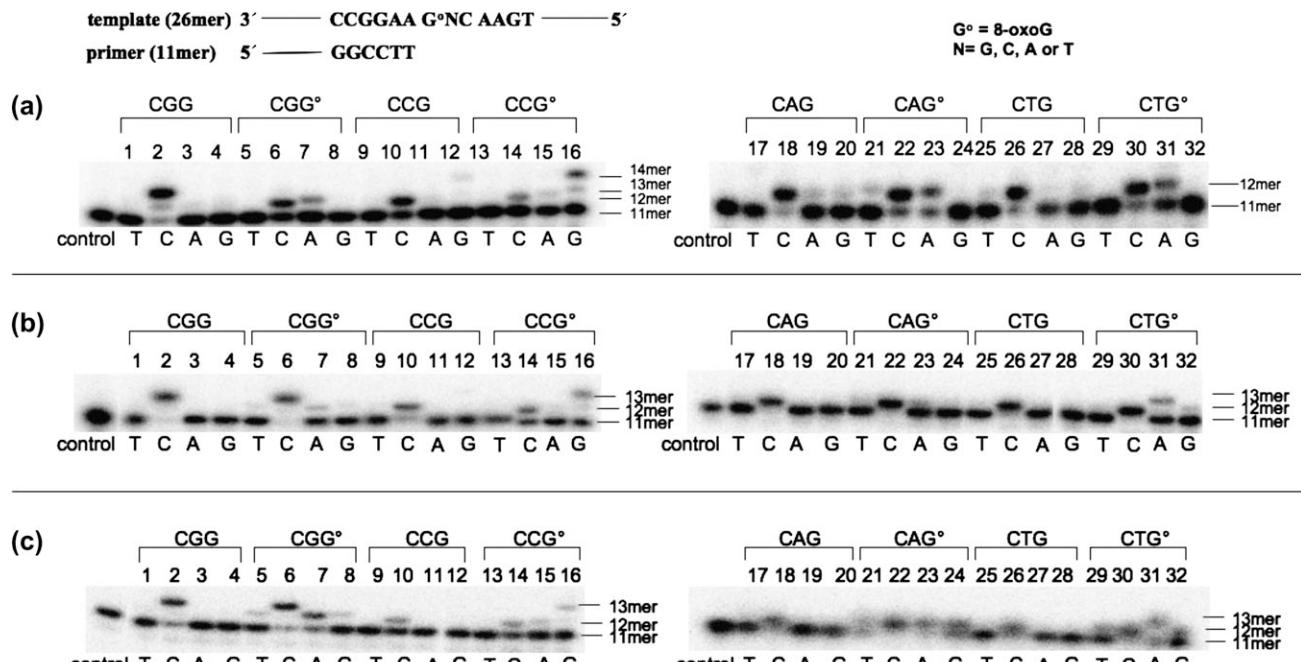
Results*Mutation induced by 8-oxodG-oligonucleotide in pol η -deficient yeast cells*

Using the yeast transformation method, oligonucleotides were introduced into Rad30-proficient and -deficient strains of *S. cerevisiae* by electroporation. Resulting revertants were obtained when these oligonucleotides were replaced with the *cyc1-31* allele of chromosome 10 to revert to wild-type CYC1. Any of the five amino acids coded by the CXY triplets at the target site give rise to the Cyc1⁺ phenotype (30).

Table I. List of 26-meric oligonucleotides used for yeast transformation and standing-start primer extension in the present study


Oligonucleotide	5' → 3' sequence	Experiment
Oligo-CGG	ataatgactgaaCGGaaaggccggttc	a, b
Oligo-CCG	ataatgactgaaCCGaaaggccggttc	b
Oligo-CAG	ataatgactgaaCAGaaaggccggttc	b
Oligo-CTG	ataatgactgaaCTGaaaggccggttc	b
Oligo-CGG ^o	ataatgactgaaCGG ^o aaggccggttc	a, b
Oligo-CCG ^o	ataatgactgaaCCG ^o aaggccggttc	a, b
Oligo-CAG ^o	ataatgactgaaCAG ^o aaggccggttc	b
Oligo-CTG ^o	ataatgactgaaCTG ^o aaggccggttc	b

a = yeast transformation experiments; b = standing-start primer extension experiments.


The mutation spectra of transformants are shown in Figure 1. In the wild type (Rad30 proficient), both oligonucleotides containing 8-oxoG showed similar low G-to-T mutation frequencies. In the pol η -deficient strain (*rad30* Δ), 8-oxoG in oligo-CCG^o showed a mutagenic potential similar to that of the wild type, however, with oligo-CCG^o the mutation rate increased significantly. These results indicate that the A to C ratio of the incorporation opposite 8-oxoG may be affected by the 5'-flanking nucleotide next to the lesion in cells lacking pol η . Mutations other than G-to-T were also observed with oligo-CCG^o in both wild-type and *rad30* Δ strains, but was not observed with oligo-CCG^o. From the above results, the translesion ability of Ypol η clearly plays a very important role and it would be of interest to investigate the effects of 5'-flanking nucleotides on Ypol η activities.

Incorporation and extension of 8-oxoG by KFexo⁻ DNA polymerase

In order to investigate how the 5'-flanking nucleotide next to the lesion influences the fidelity of DNA polymerases, we carried out a standing-start primer extension assay using templates containing different nucleotides 5' to 8-oxoG. KFexo⁻, a typical DNA polymerase without 5'-to-3' exonuclease or proofreading activities, was used to assess the effects of 5' neighbours on mutagenesis. The pattern of deoxyribonucleotide incorporated by KFexo⁻ opposite unmodified guanine and 8-oxoG is shown in (Figure 2a). Only dCTP was incorporated efficiently opposite guanine to produce

Fig. 1. Mutation spectrum induced by 8-oxoG in (a) wild-type and (b) *rad30* Δ strains. Bars show the mutation types of oligo-CCG and -CCG (open bars), oligo-CCG° (solid bars) and oligo-CCG° (grey bars) induced by 8-oxoG. *P < 0.05 (versus wild type). Other mutations include large deletion, base changes other than G-to-T at the 8-oxoG position; one or two base deletions/insertions or frameshifts which are undetectable in this assay.

Fig. 2. Primer extension of unmodified (lanes 1–4, 9–12, 17–20 and 25–28) and 8-oxoG-containing (lanes 5–8, 13–16, 21–24 and 29–32) 26mer templates primed with 11mer using (a) KFexo[−], (b) Ypol η or (c) Hpol η . The 5'-end of the primer was ^{32}P labelled and reactions were carried out in the presence of single deoxyribonucleoside triphosphate dTTP (T), dCTP (C), dATP (A), dGTP (G) or in the absence of dNTP (control) as indicated. DNA size markers are indicated on the right.

a 13mer with oligo-CGG (lane 2) and a 12mer with the other templates (oligo-CCG, -CAG and -CTG) (lanes 10, 18 and 26) as expected, while with all 8-oxoG-containing templates, dATP was also inserted opposite 8-oxoG and terminated at the 12mer position. We also unexpectedly found that dGTP was incorporated opposite 8-oxoG more efficiently than dATP with oligo-CCG° and that the primer was extended to 13mer or 14mer (lane 16).

Translesion of 8-oxoG by Ypol η

The nucleotide insertion specificity of Ypol η was examined against unmodified G and 8-oxoG in templates. While undamaged templates were correctly replicated by Ypol η as with KFexo[−], dATP as well as dCTP were incorporated opposite 8-oxoG in both modified oligonucleotides (Figure 2b). The template oligo-CCG° showed low nucleotide insertion ability compared to other sequences as shown by the KFexo[−] experiments. Use of template oligo-CCG° with dCTP and oligo-CTG° with dATP resulted in the primer being extended to the 13mer [Figure 2b], lanes 6 and 31] as two nucleotide molecules were incorporated, while with other oligonucleotide primer extension terminated at the 12mer.

Table II shows the dNTP/dCTP ratios for each template. Ypol η has a higher bypass accuracy than KFexo[−] as dATP insertion by Ypol η was much lower. Of the two modified oligonucleotides used in the *in vivo* assay, oligo-CCG° showed the lowest dATP/dCTP ratio, 0.12, which is consistent with the results found in the *in vivo* mutation assay, namely that Ypol η effectively suppressed misincorporation in the template that has dC at the 5'-flanking position next to 8-oxoG. In order to further examine the effect of sequence on the TLS properties of Ypol η , two additional templates (oligo-CAG° and oligo-CTG°) were employed in the *in vitro* experiments. The extent to which 5'-flanking nucleotides affected dATP incorporation

Table II. Relative ratio of the amount of elongated products with dATP, dGTP or dTTP to that of dCTP

Polymerase	Template sequence	RE _{dATP} /RE _{dCTP}	RE _{dGTP} /RE _{dCTP}	RE _{dTTP} /RE _{dCTP}
KFexo [−]	5'-CGG-3'	0.58	N/A	N/A
	5'-CCG-3'	0.49	1.19	N/A
	5'-CAG-3'	0.62	N/A	0.14
	5'-CTG-3'	0.61	N/A	N/A
Ypol η	5'-CGG°-3'	0.20	0.07	0.05
	5'-CCG°-3'	0.12	0.74	N/A
	5'-CAG°-3'	0.14	N/A	0.06
	5'-CTG°-3'	0.16	0.05	N/A
Hpol η	5'-CGG°-3'	0.69	N/A	0.16
	5'-CCG°-3'	0.33	0.40	N/A
	5'-CAG°-3'	0.97	0.50	0.07
	5'-CTG°-3'	0.81	0.34	0.18

The ratio, $\text{RE}_{\text{dNTP}} = \text{El}/(\text{El} + \text{Pr})$, where Pr is the band intensity of the 11-meric primer and El is the sum of the bands longer than the primer. The values were calculated from the data shown in (Figures 2a, b and c). The mean values were shown from three to five independent experiments. N/A: insertion of dATP, dGTP or dCTP opposite 8-oxoG was undetectable or the ratio was smaller than 0.05.

was in the order G > T > A > C. These results indicated that the mutagenicity of 8-oxoG was affected by 5'-flanking nucleotide sequences.

A high rate of dGTP insertion was observed with oligo-CCG° similar to the case with KFexo[−] [Figure 2a], lane 16]. dGTP insertion was more frequent than dCTP or dTTP, although dGTP was hardly incorporated opposite the lesion with other sequences (20).

Translesion of 8-oxoG by human pol η

We also analysed the sequence dependence of Hpol η . We previously reported a brief summary of the Hpol η data (33). As

shown in (Figure 2c), the lesion was mainly bypassed by incorporation of dCTP and dATP (lanes 6, 7, 14, 15, 22, 23, 30 and 31). Besides these two nucleotides, dGTP (lanes 8, 16, 24 and 32) and dTTP (lanes 5, 21 and 29) insertions were also found. Hpol η showed greater variation in the dNTP/dCTP ratio than Ypol η (Table II). In oligo-CGG $^{\circ}$, -CAG $^{\circ}$ and -CTG $^{\circ}$, the order of incorporation efficiencies opposite 8-oxoG was C > A >> G > T, which corresponds to the results reported by Zhang *et al.* (34). However, compared with other oligonucleotides, oligo-CCG $^{\circ}$ had a different character in that the bypass was very inefficient and the dATP/dCTP ratio (0.38 in oligo-CCG $^{\circ}$) was much lower than that of the other oligonucleotides, being 0.68, 0.93 and 0.81 in oligo-CGG $^{\circ}$, oligo-CAG $^{\circ}$ and oligo-CTG $^{\circ}$, respectively.

Discussion

In this study, we analysed the effects of sequence contexts on the mutagenesis induced by 8-oxoG *in vivo* using the oligonucleotide transformation assay and *in vitro* using the polymerase primer extension assay. The base excision repair system attacks 8-oxoguanine residues produced in living cells and remove it from the DNA. The nucleotide excision and mismatch repair systems are also involved in the process. When the lesion escapes the repair process, TLS may act to avoid mutations (20,21). In the present study, we set out to investigate the details of this process with a focus on the effects of neighbouring nucleotides or sequences. We have shown that TLS plays an important role in one DNA sequence in terms of avoiding mutagenesis induced by 8-oxoG in yeast. The relationship between nucleotide sequence and TLS properties had hitherto not been investigated, although a great deal of literature has shown that sequence context effects near the lesion can influence the rate of enzymatic repair efficiencies (23,25,35,36). Two oligonucleotides oligo-CCG $^{\circ}$ and oligo-CCG $^{\circ}$, containing 5'-CGG $^{\circ}$ -3' and 5'-CCG $^{\circ}$ -3' sequences, respectively, were used for both assays. The oligonucleotide transformation assay showed that in the *rad30* Δ strain the G-to-T mutation frequencies of oligo-CCG $^{\circ}$ were significantly higher than that for oligo-CCG $^{\circ}$. Thus, Ypol η appears to suppress the incorporation of dATP opposite 8-oxoG in the 5'-CCG $^{\circ}$ -3' sequence.

To investigate how the accuracy and efficiency of Ypol η -mediated TLS through 8-oxoG was influenced by the 5'-flanking nucleotides, a standing-start primer extension assay was performed. As shown in Table II, Ypol η showed low dNTP/dCTP ratios, which indicates high fidelity of Ypol η bypassing the lesion. These results are in agreement with previous reports showing that Ypol η bypasses 8-oxoG efficiently and accurately (20,37).

Oligo-CCG $^{\circ}$ had the lowest dATP/dCTP ratio (0.12). This low mutagenic potential is consistent with the efficient suppression of mutagenesis by the *rad30* gene *in vivo*. In the case of oligo-CCG $^{\circ}$, the low mutation frequencies seem to be driven in the absence of pol η -dependent TLS. Replication by an enzyme other than pol η may be sufficient to keep the mutation rates low. Thus, yeast cells may employ different strategies to avoid mutations induced by 8-oxoG residues in 5'-CCG $^{\circ}$ -3' and 5'-CCG $^{\circ}$ -3' sequences.

In mammalian systems, different sequence contexts induce different mutation spectra (38,39). 8-OxoG can induce mutations not only at the modified position but also in the 5'-flanking position, mainly due to hydrogen bonding,

Fig. 3. Proposed mechanisms of dGTP bypass of 8-oxoG during replication.

mobility and electrostatic charge near the modified region (40–42). The present study suggests that the mutation spectrum was affected by the 5'-flanking nucleotide next to 8-oxoG if the polymerase is involved. We showed that this effect was more conspicuous with Hpol η , where 5' nucleotides have effects similar to Ypol η , although the polymerase showed a higher dNTP/dCTP ratio in bypassing 8-oxoG consistent with a previous report (21).

Both KFexo $^{\circ}$ and Ypol η showed high dGTP/dCTP ratios with the oligo-CCG $^{\circ}$ sequence and efficient dGTP incorporation opposite 8-oxoG. This observation appears inconsistent with the report by Haracska *et al.* (20), where dGTP insertion catalysed by Ypol η was much slower than dCTP and dATP. We presumed that 8-oxoG might loop-out from the template and that dGTP was paired with the adjacent cytosine on the 13mer or 14mer positions. These results suggest that for oligo-CCG $^{\circ}$, dGTP incorporation opposite dCTP placed 5' to 8-oxoG occurred preferentially as shown in Figure 3.

The effect of the 5'-flanking nucleotide on frameshift mutations induced by various lesions has previously been investigated (43,44). Investigations are currently in progress to gain further insight into the frameshift due to the mispairing of 8-oxoG or sequence effects. In order to determine whether the insertion spectrum was affected by the reaction time, we analysed the insertion rate of each dNTP with CGG $^{\circ}$ and CCG $^{\circ}$ at different time intervals. The dNTP/dCTP ratios were found not to change significantly, which indicates that the mutation spectrum induced by each nucleotide is independent of the reaction time. In this study, we demonstrated that yeast pol η was responsible for accurate TLS for the template containing 8-oxoG and that TLS accuracy is influenced by the 5'-flanking nucleotide next to the lesion.

Funding

Grant-in-Aid for Scientific Research (C) (No. 17590060) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Acknowledgements

We thank Ms Asako Kawakami for her excellent technical assistance with the mutation assay.

Conflict of interest statement: None declared.

References

- Kasai, H. and Nishimura, S. (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. *Nucleic Acids Res.*, **12**, 2137–2145.
- Kasai, H. and Nishimura, S. (1984) DNA damage induced by asbestos in the presence of hydrogen peroxide. *Gann*, **75**, 841–844.
- Kasai, H., Crain, P. F., Kuchino, Y., Nishimura, S., Ootsuyama, A. and Tanooka, H. (1986) Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. *Carcinogenesis*, **7**, 1849–1851.
- Cooke, M. S., Evans, M. D., Dizdaroglu, M. and Lunec, J. (2003) Oxidative DNA damage: mechanisms, mutation, and disease. *FASEB J.*, **17**, 1195–1214.
- Hutchinson, F. (1985) Chemical changes induced in DNA by ionizing radiation. *Prog. Nucleic Acid Res. Mol. Biol.*, **32**, 115–154.
- Asami, S., Manabe, H., Miyake, J., Tsurudome, Y., Hirano, T., Yamaguchi, R., Itoh, H. and Kasai, H. (1997) Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung. *Carcinogenesis*, **18**, 1763–1766.
- Kouchakdjan, M., Bodepudi, V., Shibutani, S., Eisenberg, M., Johnson, F., Grollman, A. P. and Patel, D. J. (1991) NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn).dA(anti) alignment at lesion site. *Biochemistry*, **30**, 1403–1412.
- Shibutani, S., Takeshita, M. and Grollman, A. P. (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. *Nature*, **349**, 431–434.
- Duarte, V., Muller, G. J. and Burrows, C. J. (1998) Insertion of dGMP and dAMP during *in vitro* DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. *Nucleic Acids Res.*, **27**, 496–502.
- Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. *Nature*, **408**, 239–247.
- Malins, D. C. and Haimanot, R. (1991) Major alterations in the nucleotide structure of DNA in cancer of the female breast. *Cancer Res.*, **51**, 5430–5432.
- Fraga, C. G., Motchnik, P. A., Shigenaga, M. K., Helbock, H. J., Jacob, R. A. and Ames, B. N. (1991) Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. *Proc. Natl Acad. Sci. USA*, **88**, 11003–11006.
- Shimoda, R., Nagashima, M., Sakamoto, M., Yamaguchi, N., Hirohashi, S., Yokota, J. and Kasai, H. (1994) Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. *Cancer Res.*, **54**, 3171–3172.
- Nilsen, H. and Krokan, H. E. (2001) Base excision repair in a network of defense and tolerance. *Carcinogenesis*, **22**, 987–998.
- Swanson, R. L., Morey, N. J., Doetsch, P. W. and Jinks-Robertson, S. (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.*, **4**, 2929–2935.
- Scott, A. D., Neishabury, M., Jones, D. H., Reed, S. H., Boiteux, S. and Waters, R. (1999) Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast *Saccharomyces cerevisiae*. *Yeast*, **15**, 205–218.
- Van der Kemp, P. A., Thomas, D., Barbey, R., De Oliveira, R. and Boiteux, S. (1996) Cloning and expression in *Escherichia coli* of the OGG1 gene of *Saccharomyces cerevisiae*, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. *Proc. Natl Acad. Sci. USA*, **93**, 5197–5202.
- Radicella, J. P., Dherin, C., Desmaze, C., Fox, M. S. and Boiteux, S. (1997) Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of *Saccharomyces cerevisiae*. *Proc. Natl Acad. Sci. USA*, **94**, 8010–8015.
- Prakash, S., Johnson, R. E. and Prakash, L. (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. *Annu. Rev. Biochem.*, **74**, 317–353.
- Haracska, L., Yu, S. L., Johnson, R. E., Prakash, L. and Prakash, S. (2000) Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η . *Nat. Genet.*, **25**, 458–461.
- Washington, M. T., Johnson, R. E., Prakash, L. and Prakash, S. (2001) Accuracy of lesion bypass by yeast and human DNA polymerase η . *Proc. Natl Acad. Sci. USA*, **98**, 8355–8360.
- Hatahet, Z., Zhou, M., Reha-Krantz, L. J., Morrical, S. W. and Wallace, S. S. (1998) In search of a mutational hotspot. *Proc. Natl Acad. Sci. USA*, **95**, 8556–8561.
- Singer, B. and Hang, B. (2000) Nucleic acid sequence and repair: role of adduct, neighbor bases and enzyme specificity. *Carcinogenesis*, **21**, 1071–1078.
- Bloom, L. B., Otto, M. R., Eritja, R., Reha-Krantz, L. J., Goodman, M. F. and Beechem, J. M. (1994) Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase. *Biochemistry*, **33**, 7576–7586.
- Petruska, J. and Goodman, M. F. (1985) Influence of neighboring bases on DNA polymerase insertion and proofreading fidelity. *J. Biol. Chem.*, **260**, 7533–7539.
- Krahn, J. M., Beard, W. A., Miller, H., Grollman, A. P. and Wilson, S. H. (2003) Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. *Structure*, **1**, 121–127.
- Mendelman, L. V., Boosalis, M. S., Petruska, J. and Goodman, M. F. (1989) Nearest neighbor influences on DNA polymerase insertion fidelity. *J. Biol. Chem.*, **264**, 14415–14423.
- Efrati, E., Tocco, G., Eritja, R., Wilson, S. H. and Goodman, M. F. (1999) “Action-at-a-distance” mutagenesis. 8-oxo-7, 8-dihydro-2'-deoxyguanosine causes base substitution errors at neighboring template sites when copied by DNA polymerase β . *J. Biol. Chem.*, **274**, 15920–15926.
- Noskov, V., Negishi, K., Ono, A., Matsuda, A., Ono, B. and Hayatsu, H. (1994) Mutagenicity of 5-bromouracil and N6-hydroxyadenine studied by yeast oligonucleotide transformation assay. *Mutat. Res.*, **308**, 43–51.
- Otsuka, C., Kobayashi, K., Kawaguchi, N. et al. (2002) Use of yeast transformation by oligonucleotides to study DNA lesion bypass *in vivo*. *Mutat. Res.*, **502**, 53–60.
- Moerschell, R. P., Tsunasawa, S. and Sherman, F. (1988) Transformation of yeast with synthetic oligonucleotides. *Proc. Natl Acad. Sci. USA*, **85**, 524–528.
- Otsuka, C., Sanada, S., Hata, Y., Okuto, H., Noskov, V. N., Loakes, D. and Negishi, K. (2002) Difference between deoxyribose- and tetrahydrofuran-type abasic sites in the *in vivo* mutagenic responses in yeast. *Nucleic Acids Res.*, **30**, 5129–5135.
- Yung, C. W., Suzuki, T., Okugawa, Y., Kawakami, A., Loakes, D., Negishi, K. and Negishi, T. (2007) Nucleotide incorporation against 7,8-dihydro-8-oxoguanine is influenced by neighboring base sequences in TLS DNA polymerase reaction. *Nucleic Acids Symp. Ser.*, **51**, 49–50.
- Zhang, Y., Yuan, F., Wu, X., Rechkoblit, O., Taylor, J. S., Geacintov, N. E. and Wang, Z. (2000) Error-prone lesion bypass by human DNA polymerase η . *Nucleic Acids Res.*, **28**, 4717–4724.
- Topal, M. D., Eadie, J. S. and Conrad, M. (1986) O⁶-methylguanine mutation and repair is nonuniform. Selection for DNA most interactive with O⁶-methylguanine. *J. Biol. Chem.*, **261**, 9879–9885.
- Georgiadis, P., Smith, C. A. and Swann, P. F. (1991) Nitrosamine-induced cancer: selective repair and conformational differences between O⁶-methylguanine residues in different positions in and around codon 12 of rat H-ras. *Cancer Res.*, **51**, 5843–5850.
- Carlson, K. D. and Washington, M. T. (2005) Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by *Saccharomyces cerevisiae* DNA polymerase η . *Mol. Cell. Biol.*, **25**, 2169–2176.
- Klein, J. C., Bleeker, M. J., Saris, C. P. et al. (1992) Repair and replication of plasmids with site-specific 8-oxodG and 8-AAFdG residues in normal and repair-deficient human cells. *Nucleic Acids Res.*, **20**, 4437–4443.
- Moriya, M. (1993) Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C → T.A transversions in simian kidney cells. *Proc. Natl Acad. Sci. USA*, **90**, 1122–1126.
- Russo, M. T., De Luca, G., Degan, P. and Bignami, M. (2007) Different DNA repair strategies to combat the threat from 8-oxoguanine. *Mutat. Res.*, **614**, 69–76.
- Kamiya, H., Miura, K., Ishikawa, H., Inoue, H., Nishimura, S. and Ohtsuka, E. (1992) c-Ha-ras containing 8-hydroxyguanine at codon 12 induces point mutations at the modified and adjacent positions. *Cancer Res.*, **52**, 3483–3485.
- Kamiya, H., Murata-Kamiya, N., Koizume, S., Inoue, H., Nishimura, S. and Ohtsuka, E. (1995) 8-Hydroxyguanine (7,8-dihydro-8-oxoguanine) in hot spots of the c-Ha-ras gene: effects of sequence contexts on mutation spectra. *Carcinogenesis*, **16**, 883–889.
- Bebenek, K. and Kunkel, T. A. (1990) Frameshift errors initiated by nucleotide misincorporation. *Proc. Natl Acad. Sci. USA*, **87**, 4946–4950.
- Shibutani, S. and Grollman, A. P. (1993) On the mechanism of frameshift (deletion) mutagenesis *in vitro*. *J. Biol. Chem.*, **268**, 11703–11710.

Received on May 5, 2008; revised on July 16, 2008;
accepted on July 28, 2008