

平成25年3月22日 岡山大学定例記者発表

鉄系超伝導材料: レアアースの使用量、大幅削減に成功

鉄系超伝導基本物質の臨界温度で世界記録更新

岡山大学大学院自然科学研究科 野原 実

超伝導:電気抵抗ゼロ、無損失で大量の電流が流せる

強力な磁力の超伝導電磁石が作れる

従来材料(ニオブ・チタン合金など) 高価な液体ヘリウムでセ氏零下269度へ冷却する必要あり

ヘリウム:輸入量が大幅に減少

液体ヘリウムの用途別販売量

'123

液体ヘリウムを用いない超伝導材料の実用化が急務

米国施設の修理長期化などで高騰 ヘリウム風船が無くなった

今後、エネルギー資源が天然ガス からシェールガス、深海のメタンハ イドレートへ移行

ヘリウム産出量 さらに減少

鉄系超伝導物質:ヘリウム不要

表 25.4 希土類の地殻存在量(大陸地殻)および金属価格

原子 番号	元素 記号	元素名	大陸地殻 (ppm)	純度 (%)	価格 (\$/kg)
57	La	ランタン	16	100	30
58	Ce	セリウム	33	96	40
59	Pr	プラセオジム	4	96	50
60	Nd	ネオジム	16	95	45
62	Sm	サマリウム	4	100	250
63	Eu	ユーピウム	1	100	1,000
64	Gd	ガドリニウム	3	100	140
65	Tb	テルビウム	1	100	800
66	Dy	ジスプロシウム	4	99	150
67	Но	ホルミウム	1	100	650
68	Er	エルビウム	2	96	160
69	Tm	ツリウム	0	100	2,500
70	Yb	イッテルビウム	2	99	400
71	Lu	ルテチウム	0	100	3,500
39	Y	イットリウム	20	100	50
21	Sc	スカンジウム	30	100	NA

出典:USGS, "Minerals Yearbook".

レアメタル・資源 38元素の統計と展望 西山孝著 丸善

レアアース(希土類元素)の使用量、大幅削減に成功

従来の鉄系超伝導物質

超伝導へ移行する温度

SmFeAsO_{0.9}F_{0.1} セ氏零下217度(55 ケルビン)

サマリウム

鉄 ヒ素 酸素 フッ素

新たに開発した鉄系超伝導物質

(Ca0.83La0.17)Fe2(As0.84P0.16)2

カルシウム ランタン 鉄 ヒ素 リン

セ氏零下229度(45 ケルビン)

安価でありふれた元素(カルシウムと鉄)が主成分

電気式冷凍機で冷却可

鉄系実用化へ前進

SCIENTIFIC REPORTS

SUBJECT AREAS: PHYSICS MATERIALS SCIENCE CONDENSED-MATTER PHYSICS SUPERCONDUCTING PROPERTIES AND MATERIALS

Emergence of superconductivity at 45 K by lanthanum and phosphorus co-doping of CaFe₂As₂

Kazutaka Kudo, Keita Iba, Masaya Takasuga, Yutaka Kitahama, Jun-ichi Matsumura, Masataka Danura, Yoshio Nogami & Minoru Nohara

Department of Physics, Okayama University, Okayama 700-8530, Japan.

Received 20 October 2012

> Accepted 4 March 2013

Published 18 March 2013 Co-doping of lanthanum and phosphorus in CaFe₂As₂ induces superconductivity at 45 K. This superconducting transition temperature is higher than the 38 K transition in Ba_{1-x}K_xFe₂As₂, which is the maximum found thus far among the 122 phases. Superconductivity with a substantial shielding volume fraction was observed at $0.12 \le x \le 0.18$ and y = 0.06 in Ca_{1-x}La_xFe₂(As_{1-y}P_y)₂. The superconducting phase of the present system seems to be not adjacent to an antiferromagnetic phase.

英国 Nature Publishing Group の電子ジャーナル Scientific Reports 誌に掲載(3月18日) 鉄系基本物質 122型の超伝導転移温度の記録を5年ぶりに更新

兵庫県にある大型放射光施設 SPring-8 で原子配列を精密に決める実験(5月) 理論的な解析により

> 高い温度で超伝導に移行する条件の解明 レアアースを全く使わずに超伝導に移行する条件の解明