Modeling in aquatic environment

Lecture 4

Temperature models

Timo Huttula

timo.huttula@environment.fi

www.syke.fi/jyvaskyla

http://www.jyvaskyla.fi/international

11/17/2016

Huttula Finnish Environment Institute, SYKE

1

Heat balance components

Heat budget is calculated as water balance.

We need to know the components in the balance

In small role also heat from precipitation and sediment

11/17/2016

Short wave radiation, F_s

- Wave length below 2 mikrom (visible light: 0.39 mikrom...0.74 mikrom)
- Flux on earth surface is dependent zenith angle of sun and atmospheric conditions (humidity, dustiness, cloudiness)
- In Finland highest daily means are O(600) Wm⁻²
- At Equator the flux is about double to our values

11/17/2016

Huttula Finnish Environment Institute, SYKE 3

Short wave radiation on water surface

- · Is partly reflected
- Reflection is dependent on incoming angle (between surface normal and incoming beam) and surface properties (turbidity, roughness)
- If angle is large the reflection is larger as in the case of small angle
- Albedo: (intensity of reflected short wave radiation)/(intensity of incoming short wave radiation)
- Examples of albedo values: Water surface: 0.03-0.40, Snow: 0.40-0.85, Dense forest: 0.10-0.15

11/17/2016

Huttula Finnish Environment Institute, SYKE

Penetration of short wave radiation $F_{si} = F_{so}e^{-zK_e}$

- Decays exponentially with depth
- Decay is dependent on absorption and scattering from particles like plankton, suspended solids...
- Absorption is dependent on water colour
- Longer waves penetrate deeper
- Decays mostly during the first 10-20 m from the lake surface

11/17/2016 Huttula I

Institute, SYKE

K_o=extinction coeff.

 α_0 =extinction coeff. when no suspended substances in water γ_0 =shelf shading coeff. of suspended matter

In FINNECO-model:

SS_{t,0}= concentration of suspended matter at moment t and in the beginning of calculation (0)

e surface n=amount of water layers, where suspended matter is found

Incoming long wave radiation, F₁(down)

- Wave length 2 mikrom....20 mikrom
- Originally from sun, then absorbed by clouds, atmosphere and buildings ...
- They are emitting according Stefan Bolzman equation (eq. given later)
- Cloudiness correction
- Stable heat source around the year
- Max. daily means by us about 450 Wm⁻²
- Is absorbed very near the water surface, within 10 cm.

11/17/2016

Huttula Finnish Environment Institute, SYKE

Long wave back radiation from water F₁(up) and sensible heat flux, F_c

- F₁(up)
 - Reflected part and part emitted as black body
 - Reflected is only about 3 % from incoming and its daily values range to 5...15 Wm⁻²
 - Emitted long wave back radiation is in maximum about 250...500 Wm⁻² (daily average)
 - Important especially in late summer and also in autumn
- F
 - Can be directed +/-
 - Direct heat conduction between air and water masses
 - Depends on water temperature difference between air and water, wind velocity and transfer coefficient
 - By us daily values are -70...200 Wm⁻²

11/17/2016 Huttula Finnish Environment Institute, SYKE 7

Latent heat flux (F_I) and other components

- Latent heat flux (heat used in evaporation or released in condensation)
 - Dependent on difference between the prevailing water vapour pressure and saturation vapour pressure as well as wind velocity
 - By us the values range to -50...350 Wm⁻²
- Other components
 - Heat from or to river waters. Important only in lakes with a short retention time
 - Heat from ground water. Important in small lakes within eskers
 - Sediment heat flux. Heat is absorbed in summer, released in winter. Important in shallow muddy lakes. Values range to 1...3

11/17/201**W** m⁻². Huttula Finnish Environment Institute, SYKE

Potential energy vs. kinetic energy

- Heat is accumulated near the lake surface
- Vertical mixing is the process leading the heat down to water body
- Mixing can be caused by currents. Most important are wind induced and convective currents
- In warming up the thermal energy of the water parcel is increased
- Water stability is a measure to express the mixing resistance of certain water body
- Wind work is the amount of energy to mix the water body to certain depth

11/17/2016

Huttula Finnish Environment Institute, SYKE 9

Stratification calculation options

- Adsoprtion models (Dake&Harleman), mixing only due to the convection
- Energy balance models. Potential energy of the water body is compared to the kinetic energy of the wind (Klaus&Turner)
- Models based on the turbulent eddy diffusivity (Spalding&Svensson, Baumert, ...)
- Combinations of models of previously mentioned types

11/17/2016

Huttula Finnish Environment Institute, SYKE

Solution principles of temperature models

- Calculate heat fluxes at the upper and lower boundaries
- Calculate the heat fluxes of the river water (in and out)
- Calculate the penetration of the short wave fluxes
- Solve the density (=state) equation (equation given later)
- · Apply vertical mixing
- Calculate the ice formation or melt

11/17/2016

Huttula Finnish Environment Institute, SYKE

11

Equations in PROBE-model, F_s

$$F_s = (1 - a)S_0 \cos z (T_r - A_w) \prod_{i=1}^{3} (1 - N_i (-T_i))$$

 $A_w = 0.077 (u \sec z)^{0.3}$

 $T_r = 1.041 - 0.16(\sec z)^{0.5}$

 $T_{low} = 0.35 - 0.015 \sec z$

 $T_{middle} = 0.45 - 0.01 \sec z$

 $T_{high} = 0.9 - 0.04 \sec z$

 $\sec z = (\cos z)^{-1}$

=albedo

A_w= absorption by the water vapor (low, middle, high).

S₀=solar constant, 1395 Wm⁻²

 T_r = scattering-transmission

u= amount water in the air mass

z=solar zenit angle

N_i= Ni is the amount of clouds of the different categories

T_i= cloud function

11/17/2016

Huttula Finnish Environment Institute, SYKE

Equations in PROBE-model, Net long wave radiation F₁

$$F_1 = F_1 \uparrow -F_1 \downarrow$$

$$F_1 \uparrow = \varepsilon' \sigma T_*^4$$

== Stefan-Bolzman type equation

$$F_1 \downarrow = \sigma T_a^4 (c + b \sqrt{e_a})(1 + dN)$$

 ε' = emissivity of the lake water =0.97

σ=Stefan-Bolzman constant=5.67*10⁻⁸ Wm⁻² K⁻⁴

T_s=lake water surface temperature (⁰K)

 T_a = air temperature (0 K)

 e_a = water vapour pressure in air (mb) = f(temperature and humidity)

N= cloudiness

c,b ja d = constants

11/17/2016

Huttula Finnish Environment Institute, SYKE

10

Equations in PROBE-model Sensitive heat flux, F_c

$$F_c \downarrow \uparrow = \rho_a C_p \overline{U} (C_{c1} - C_{c2} (T_s - T_a))$$

$$S_t = \overline{U}(T_s - T_a)$$

 $\rho = \text{air temperature, kg m}^{\text{-3}}, Cp = \text{specific heat of water} = 4200 \text{ J kg}^{\text{-1}}, U = \text{wind velocity m s}^{\text{-1}} S_t = \text{air stability, } C_{c1}, C_{c2} = \text{are sensible heat transfer, which depend on air stability}$

In stable conditions (S_t <0) C_{c1} = 0.0026 and C_{c2} =0.86E⁻³ In unstable conditions (0< S_t <25), C_{c1} = 0.002 and C_{c2} =0.97E⁻³

Very unstable conditions (25<S $_{\! t}$), $\, C_{c1}=0.0\,$ and $C_{c2}=1.46E^{\text -3}$

11/17/2016

Huttula Finnish Environment Institute, SYKE

Equations in PROBE-model...

Latent heat flux, F_e

$$F_l \downarrow = LC_e \overline{U}(Q_w - Q_a)$$

Total heat flux

$$F_N = F_1 + F_c + F_e$$

11/17/2016

Huttula Finnish Environment Institute, SYKE

L= the latent heat of evaporation,

Ce =the moisture transfer coefficient

Qw and Qa = the water vapor densities close to the water surface and in the atmosphere respectively.

PROBE: Heat equation and vertical mixing

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\frac{v_T}{\sigma_T} \frac{\partial T}{\partial z} \right) + S_T$$

$$v_T = \frac{C_v \rho k^2}{\varepsilon}$$

Boundary condition at the upper boundary

$$\frac{v_T \partial T}{\sigma_T \partial z} = \frac{F_N}{\rho C_n}$$

11/17/2016

 $\nu_T = \text{eddy diffusivity (} = > \text{this is a}$ turbulent model)

 σ_T =turbulent Prandtl number= ν/γ

v=kinematic viscosity

γ=heat conductivity

k=kinetic turbulent energy

ε=dissipation of turbulent energy

C_v=empirical constant

Huttula Finnish Environment Institute, SYKE

16

Experiences about PROBE-model

- Case study: Huttula ym. 1994
 ..\..\.TH_artikkeleja\Effects of Climate Change...pdf
- Good results in scales from days...to years
- Water balance well calculated
- Ice formation and decay well calculated
- Heat exchange coefficients need to be calibrated for some lakes
- Hypolimnetic temperatures too low sometimes vertical mixing too small in model
- Sheltering effects, effects of sediment quality and penetration of short wave radiation (extinction coefficients) need special attention

11/17/2016

Huttula Finnish Environment Institute, SYKE 17

MyLake

- · One dimensional vertical lake model
- Andersson and Saloranta 2000
- Ice model by Leppäranta (1991) and Saloranta (2000)
- The vertical diffusion coefficient from the stability frequency №
 (Hondzo and Stefan, 1993)
- Utilises the MATLAB Air-Sea Toolbox (http://sea-mat.whoi.edu/air_sea-html/) for calclulation of radiative and turbulent heat fluxes, surface wind stress and astronomical variables
- Vertical mixing is based on the energy calculation between kinetic energy from wind and potential energy of layer(s) to be mixed
- Recent MyLake applications:
 - Pulkkanen et al. 2010: Assessment of impacts and adaptation of fisheries production and wash off effects in <u>Lake Päijänne</u>
 - Pätynen, A., Elliott, J., Kiuru, P., Sarvala, J., Ventelä, A., & Jones, R. (2014). Modelling the impact of higher temperature on the phytoplankton of a boreal lake. BOREAL ENVIRONMENT RESEARCH, 19 (1), 66-78.
 - Holmberg, Maria, et al. "Effects of changing climate on the hydrology of a boreal catchment and lake DOC-probabilistic assessment of a dynamic model chain." Boreal Environment Research, vol. 19, 2014, p. 66+.
 Academic OneFile, Accessed 17 Nov. 2016.

11/17/2016

Huttula Finnish Environment Institute, SYKE

Related literature

 Huttula T., Peltonen A., Bilaletdin Ä., Saura M., 1992: The effects of climatic change on lake ice and water temperature. Aqua Fennica Vol. 22,2. <u>Linkki</u>

11/17/2016

Huttula Finnish Environment Institute, SYKE