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Settling velocity (v;): Stoke’s
eguation

W = 2(:03 _p)gr2 _ (ps _,O)gd2
i Ou 18u

e Assumption: spherical particles
« Gravity force balances drag force
» Particle reaches a constant settling velocity

e This velocity is dependent on: fluid viscosity (1), density
difference between the particle and water (p.-p) and
finally on particle diameter (d),

e g=gravity constant= 9,81 m/s?

* Velocity range: From 0.07 m/d (clay, d=1.2 um) to 710
m/d (sand, d=200um), density=2.5 gcm-3
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Settling speed In natural waters

Particles are seldom spherical: clay particles are like plates

Aggregation of particles happens due to the
electromagnetic forces =» cohesive solls (clays, mud...)

Organic compounds like humic substances have a very
fragile structure =» structure changes even in water column

=» velocity from Stoke’s equation has to be corrected with
empirical relations

Baba& Komar, 1981: w,,,=0.761w,

In sediment transport models w, is determined on the basis
of the median patrticle size from a surface sediment sample
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Erosion or
resuspension
from bottom

Acting forces on a particle laying on the bottom
1. difference between gravity and buoyancy
2. drag force by the current

3. lifting force due to the pressure differences as caused by water
flowing between particles

4. electromagnetic forces causing aggregation
Term 1. « (‘is related to’) density difference and particle (diameter)3

Terms 2 and 3. « shear force caused by current and particle
(diameter)?

Shields’s empirical curve for erosion used much in designing of
structures

A simplified erosion curve by Hjulstrom (erosion vs. current velocity)

In models we use most often the critical shear concept
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Hjulstrom’s curve for erosion
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Critical shear

Total shear (t) on the lake bottom has
two components:

— 1) shear caused by orbital movements of

waves = f(wind fetch over lake, lake mean
depth, wind velocity and duration)Lake
Pyhajarvi example

2) shear caused by currents

T > critical shear (t,) : erosion happens
with a rate «« a*(excess shear)®

1., & and b are experimental values,
which we calibrate during model
application
values for t.: 0.008...1 Nm=2, b=1..3, a =
depends on sediment

In this formulation there are no
consolidation effects and bottom
morphology is not included
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Calculation of sediment transport

e Simple screening tools can be found from www:
http://www.wes.army.mil/el/dots/doer/tools.html or
http://www.coastal.udel.edu/faculty/rad/

e Using numerical flow models for predicting the
horizontal current field

e Suspended solids concentration is calculated with
concentration equation

* Following terms in concentration equation:
— horizontal advection with settling speed in vertical dimension
— turbulence
— mass flow from tributaries and to out flowing river
— settling and deposition to bottom
— erosion or resuspension from bottom
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Hydro - power
! P plant

Example w
from Mantta

2DH flow model
with BOD7 water

q ual Ity Com partment Figure 27. The research area downstream of t‘he hydropower plant and the pulp and paper

mill in Ménttd, Central Finland (29). 0 = the natural throughflow, 1 =flow induced by the
“discharge through the hydropower plant, 2 = the main place of the flow measurements (e.g.,

Sed i ment WaS I ig ht Figure 11), 3 = the main place of the concentration sampling (e.g., Figure 29).
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Mantta:
Transport
model
result

Sediment:

fibrous
material
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Figure 29. The discharge through the hydropower plant (Qy, above), the loading from the pulp
and parer mill (BOD,, middle), and their concentration effect (C;, below) at the sampling point
3 (Figure 27) downstream of Mantta in winter 1978 as modeled (line) and measured (crosses).
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Sediment transport in Tanganyika

* Model simulation
lake wide circulation model =»boundary values (current velocity) for

high resolution model at river mouths

flow model and suspended sediment (SS) transport models
SS input was estimated from historical data
real winds from atmospheric model HIRLAM (this model was used

first time in tropics)
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3D SEDIMENT TRANSPORT MODEL
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Example from Karhijarvi

 Three different models were tested 2DH, 2DV
and 3D model

 Models were tested in an runoff case in Oct
1992, when heavy rains caused erosion from
watershed and a heavy suspended solids load
to lake

 Data: winds on the lake, water current
observations, turbidity observations

= 3D model gave best results
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Sediment transport in Coherens: 1
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Sediment transport in Coherens: 2
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Sediment concentrations can be represented either as a volumetric concen-
tration ¢ in units of m*/m® or as a mass concentration cpu.s in kg/m®. The
two forms are related by

The volumetric form is taken in COHERENS, which 18 considered as more
physically meanigfull, especially in processes as hindered settling.

A dimensional analysis by Yalin (1977) shows that the sediment transport
can be expressed by a number of dimensionless parameters:

fiy 54 (7.26)
L’
pu;
g=- = . (7.27)
(ps — p)gd
g (7.28)
]
= g /3 i
d, _d[(s— I)V—g} (7.29)
b = : (7.30)
(s — 1)gd®

where d 18 the particle diameter, Re, the particle Reynolds number, # the
dimensionless shear stress or Shields parameter (Shields, 1936), s the relative

density, ds the dimensionless particle diameter and g the sediment load per
unit width (in m?/s).
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Sediment transport in Coherens: 3

 Number of sediment fractions is not limited, but In
practice the most important are d50 (median
particle size) and some decadal values like, d10
and d90

e Hindered settling when SS-concentration large,
like 3 g/l. In F. in natural waters it about 1-10 mg/I.

e Surface waves are not included in main code. Still
the effect of waves is included in bottom stresses

 Wave height, wave period and wave direction as
iInput from external data
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Sediment transport in Coherens: 4

e At bottom boundary the critical shear stress
approach is used

e Several options are available

— Modification of Shields non-dimensional shear stress
to become dependent only on d. as Brownlie (1981)

— Or as Soulsby&Whitehouse (1997) provided a new
form

— Or constant value of critical shear stress 0.03 as
proposed by Wu et al. (2000)

— User can set a value (note: has to be the kinematic
one)
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Sediment transport in Coherens 5
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« Bed load is active in the near bed layer with thickness
taken often as zsb = 2d. Very thin layer = Seldom used by us.
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Sediment transport in Coherens 6

o Rl Lo o s s ey R R R E B S 98 BE B K 333
7.5.1 Engelund and Hansen (1967) . ... .. ... .. ... 333
7.5.2 Ackers and White (1973) . . . . . . . . . ... .. ... 334

7 5.3 Madsen and Grant (1976) . . . ... ... .. .. ... 335
754 Wuetal (2000) . ... ... .. ... ... ..., 336
it MU AN . - o noom o o w o w mm m B R E %W &S N 336
7.5.5.1 Current-related part . . .. .. ... .. ... 338

7002 Woaveagelated part . . . o 5 o ¢ o5 o6 o6 ¥ 339

e W B « s 6565 86 82 85 55 9% 85 340

By us mostly the suspended sediment transport
calculation
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Sediment transport in Coherens 7
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Sediment transport in Coherens 8

7.6.3.1 Erosion and deposition of sand in 3-D

The following equation is used as the boundary condition near the bed for
the suspended sediment transport equation (taken at a reference height a

above the bed)

— Dy(@) 22 (a) — winla)en(a) = B — D, (7.120)
Here, E, 1s the erosion of sediment fraction n, D, the deposition, ¢, the
volumetric sediment concentration, and w,, the settling velocity of fraction
n. Note that because the volume concentrations are used in COHERENS, the
dimensions of the erosion and deposition are m/s.
The deposition flux is given as

Dy, = ws,n{ﬂ']fﬂ{a:] (7.121)

Using this expression, the bottom boundary conditions reduces to the
following Neumann boundary condition:

ey
_ Dy(a) ai = ol (7.122)
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Mo

e MoMa - MONITO

Ma-project

RING MASTER

* Full name: AQUATIC MONITORING FOR

SUSTAINABLE D

REDGING IN NORTHERN

_AKES OF EGYPT

» Funded by the Ministry of Foreign Affairs Finland
* Project duration 2017-2018, possible extension

to 2019

e Partners: Finnish Environment Institute (SYKE)
and General Authority for Fish Resources
Development (GAFRD) in Egypt
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Goals

« To strengthen the monitoring and prediction capacity of
GAFRD

e To assess the environmental impacts of dredging

e To evaluate improvement of water exchange (sea water
Intrusion)

e To define consequent impacts on fish population and
determinate the follow-up of possible release of
hazardous substances accumulated in the sediments

 The aim of these assignments is to improve the
environmental status of the lakes in an environmentally
and socially sustainable manner
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MoMa-project is closely related to an investment project, where
Finland supports GARFD to purchase WaterMaster dredgers by
Agquamec

Whbesite: http://www.watermaster.fi/




Key questions for finding optimal
solution in dredging

Balance between

— Improving water exchange, water quality and space for fish
production

— Effective use of labor time and machinery

— Harmful effects for aquatic life during the operation and in long
time perspective

Optimal timing: season, time of day
Sites: where to operate

Way of operation: all dredgers in same area or they are
distributed??

Solution: Monitoring and modelling
Model used for planning the dredging activities

Monitoring used for data collection and validating the
model



