Modeling in aquatic environment

Lecture 7 Sediment transport models

Timo Huttula

Timo.huttula@environment.fi

http://www.ymparisto.fi/syke/jyvaskyla

Settling velocity (v_f): Stoke's equation $w_{s} = \frac{2(\rho_{s} - \rho)gr^{2}}{9\mu} = \frac{(\rho_{s} - \rho)gd^{2}}{18\mu}$

- Assumption: spherical particles
- Gravity force balances drag force
- Particle reaches a constant settling velocity
- This velocity is dependent on: fluid viscosity (μ), density difference between the particle and water (ρ_s-ρ) and finally on particle diameter (d),
- g=gravity constant= 9,81 m/s²
- Velocity range: From 0.07 m/d (clay, d=1.2 μm) to 710 m/d (sand, d=200μm), density=2.5 gcm⁻³

Settling speed in natural waters

- Particles are seldom spherical: clay particles are like plates
- Aggregation of particles happens due to the electromagnetic forces → cohesive soils (clays, mud...)
- Organic compounds like humic substances have a very fragile structure → structure changes even in water column
- → velocity from Stoke's equation has to be corrected with empirical relations
- Baba& Komar, 1981: w_{real}=0.761w_s
- In sediment transport models w_s is determined on the basis of the median particle size from a surface sediment sample

Erosion or resuspension from bottom

- Acting forces on a particle laying on the bottom
 - 1. difference between gravity and buoyancy
 - 2. drag force by the current
 - 3. lifting force due to the pressure differences as caused by water flowing between particles
 - 4. electromagnetic forces causing aggregation
- Term 1. ∞ ('is related to') density difference and particle (diameter)³
- Terms 2 and 3. ∞ shear force caused by current and particle (diameter)^2
- Shields's empirical curve for erosion used much in designing of structures
- A simplified erosion curve by Hjulström (erosion vs. current velocity)
- In models we use most often the critical shear concept 11/27/2016
 Huttula Finnish Environment Institute, SYKE

Hjulström's curve for erosion

PARTICLE DIAMETER, mm

Critical shear

- Total shear (τ) on the lake bottom has two components:
 - 1) shear caused by orbital movements of waves = f(wind fetch over lake, lake mean depth, wind velocity and duration)<u>Lake</u>
 <u>Pyhäjärvi example</u>
 - 2) shear caused by currents
- τ > critical shear (τ_{cr}) : erosion happens with a rate $\propto a^*(excess shear)^b$
- τ_{cr} , a and b are experimental values, which we calibrate during model application
- values for τ_{cr} : 0.008...1 Nm⁻², b=1..3, a = depends on sediment
- In this formulation there are no consolidation effects and bottom morphology is not included

Calculation of sediment transport

- Simple screening tools can be found from www: <u>http://www.wes.army.mil/el/dots/doer/tools.html</u> or <u>http://www.coastal.udel.edu/faculty/rad/</u>
- Using numerical flow models for predicting the horizontal current field
- Suspended solids concentration is calculated with concentration equation
- Following terms in concentration equation:
 - horizontal advection with settling speed in vertical dimension
 - turbulence
 - mass flow from tributaries and to out flowing river
 - settling and deposition to bottom
 - erosion or resuspension from bottom

Example from Mänttä

2DH flow model with BOD7 water quality compartment

Sediment was light organic fibre

Short term regulation at hydropower plant

Figure 27. The research area downstream of the hydropower plant and the pulp and paper mill in Mänttä, Central Finland (29). 0 = the natural throughflow, 1 = flow induced by the discharge through the hydropower plant, 2 = the main place of the flow measurements (e.g., Figure 11), 3 = the main place of the concentration sampling (e.g., Figure 29).

Mänttä: Transport model result

Sediment: fibrous material

Figure 29. The discharge through the hydropower plant (Q_M , above), the loading from the pulp and parer mill (BOD₇, middle), and their concentration effect (C_3 , below) at the sampling point 3 (Figure 27) downstream of Mänttä in winter 1978 as modeled (line) and measured (crosses).

Huttula Finnish Environment

Sediment transport in Tanganyika

- Model simulation
 - lake wide circulation model → boundary values (current velocity) for high resolution model at river mouths
 - flow model and suspended sediment (SS) transport models
 - SS input was estimated from historical data
 - real winds from atmospheric model HIRLAM (this model was used first time in tropics)

Example from Karhijärvi

- Three different models were tested 2DH, 2DV and 3D model
- Models were tested in an runoff case in Oct 1992, when heavy rains caused erosion from watershed and a heavy suspended solids load to lake
- Data: winds on the lake, water current observations, turbidity observations
- → 3D model gave best results

7	Sediment transport model										31 Souls							
	7.1	Introd	uction			• •	•											311
	7.2	Physical aspects									311							
		7.2.1	Bed shear	stresses .			•											311
		7.2.2	Wave effe	cts			•											313
		7.2.3	Density e	ffects														315
			7.2.3.1	Equation of	f stat	е.												315
			7.2.3.2	Density stra	atific	atio	n											315
		7.2.4	Kinemati	c viscosity						•								316
	7.3	Sedim	Sediment properties								317							
		7.3.1	Introduct	ion														317
		7.3.2	Critical s	near stress													•	318
			7.3.2.1	Hiding and	expo	sur	е			1.1							•	319
			7.3.2.2	Bed level g	radie	nt					0.12	•						320
		7.3.3	Settling v	elocity							0.12	•						320
			7.3.3.1	Single parti	cle s	ettli	ng			7.43	. 12					2		320
			7.3.3.2	Hindered se	ettlin	g.				7.45								321
			7.3.3.3	Influence of	floc	cula	tic	n			а н .	· •	2					322
2016	6		F	luttula Finnish	n Envi	ronm	ien	t										13

Sediment concentrations can be represented either as a volumetric concentration c in units of m^3/m^3 or as a mass concentration c_{mass} in kg/m³. The two forms are related by

$$c_{mass} = \rho_s c \tag{7.25}$$

The volumetric form is taken in COHERENS, which is considered as more physically meanigfull, especially in processes as hindered settling.

A dimensional analysis by Yalin (1977) shows that the sediment transport can be expressed by a number of dimensionless parameters:

$$Re_* = \frac{u_*d}{\nu} \tag{7.26}$$

$$\theta = \frac{\rho u_*^2}{(\rho_s - \rho)gd} \tag{7.27}$$

$$s = \frac{\rho_s}{\rho} \tag{7.28}$$

$$d_* = d \left[(s-1)\frac{g}{\nu^2} \right]^{1/3} \tag{7.29}$$

$$\Phi = \frac{q}{\sqrt{(s-1)gd^3}}\tag{7.30}$$

where d is the particle diameter, Re_* the particle Reynolds number, θ the dimensionless shear stress or Shields parameter (Shields, 1936), s the relative density, d_* the dimensionless particle diameter and q the sediment load per unit width (in m²/s).

11/27/2016

14

- Number of sediment fractions is not limited, but in practice the most important are d50 (median particle size) and some decadal values like, d10 and d90
- Hindered settling when SS-concentration large, like 3 g/l. In F. in natural waters it about 1-10 mg/l.
- Surface waves are not included in main code. Still the effect of waves is included in bottom stresses
- Wave height, wave period and wave direction as input from external data

- At bottom boundary the critical shear stress approach is used
- Several options are available
 - Modification of Shields non-dimensional shear stress to become dependent only on d_{*} as Brownlie (1981)
 - Or as Soulsby&Whitehouse (1997) provided a new form
 - Or constant value of critical shear stress 0.03 as proposed by Wu et al. (2000)
 - User can set a value (note: has to be the kinematic one)

7.4	Bed lo	ad
	7.4.1	Introduction
		7.4.1.1 Transport of different sediment size classes 324
		7.4.1.2 Applicability of transport models
	7.4.2	Meyer-Peter and Mueller (1948)
	7.4.3	Engelund and Fredsøe (1976)
	7.4.4	Van Rijn (1984b)
	7.4.5	Wu et al. (2000)
	7.4.6	Soulsby (1997)
	7.4.7	Van Rijn (2007a)
	7.4.8	Van Rijn (2003)
	7.4.9	Bed slope effects and coordinate transforms

 Bed load is active in the near bed layer with thickness taken often as zsb ≈ 2d. Very thin layer → Seldom used by us.

7.5	Total Load											
	7.5.1	Engelund and Hansen (1967)										
	7.5.2	Ackers and White (1973)										
	7.5.3	Madsen and Grant (1976)										
	7.5.4	Wu et al (2000)										
	7.5.5	Van Rijn (2003)										
		7.5.5.1 Current-related part										
		7.5.5.2 Wave-related part										
	7.5.6	Van Rijn (2007a)										

• By us mostly the suspended sediment transport calculation

7.6	Susper	nded sediment transport				
	7.6.1	Three-dimensional sediment transport				
	7.6.2	Two-dimensional sediment transport				
	7.6.3	Erosion and deposition				
		7.6.3.1 Erosion and deposition of sand in 3-D 343				
		7.6.3.2 Erosion of cohesive sediment in 3-D				
		7.6.3.3 Erosion-deposition of sand in 2-D				
		7.6.3.4 Erosion-deposition of cohesive sediment in 2-D 347				
	7.6.4	Sediment diffusivity				
		7.6.4.1 Without wave effects				
		7.6.4.2 With waves effects				
	7.6.5	Boundary conditions				
7.7	Numer	rical methods \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 350				
	7.7.1	Erosion-deposition				
		7.7.1.1 Three-dimensional sediment transport 351				
		7.7.1.2 Time integration of sediment transport 353				
	7.7.2	Bed slope factors				
	7.7.3	Gaussian-Legendre quadrature				
	7.7.4	Bartnicki filter				

11/:

7.6.3.1 Erosion and deposition of sand in 3-D

The following equation is used as the boundary condition near the bed for the suspended sediment transport equation (taken at a reference height a above the bed)

$$-D_V(a)\frac{\partial c_n}{\partial z}(a) - w_{s,in}(a)c_n(a) = E_n - D_n$$
(7.120)

Here, E_n is the erosion of sediment fraction n, D_n the deposition, c_n the volumetric sediment concentration, and $w_{s,n}$ the settling velocity of fraction n. Note that because the volume concentrations are used in COHERENS, the dimensions of the erosion and deposition are m/s.

The deposition flux is given as

$$D_n = w_{s,n}(a)c_n(a) \tag{7.121}$$

Using this expression, the bottom boundary conditions reduces to the following Neumann boundary condition:

$$-D_V(a)\frac{\partial c_n}{\partial z}\Big|_a = E_n \tag{7.122}$$

Huttula Finnish Environment Institute, SYKE

MoMa-project

- MoMa MONITORING MASTER
- Full name: AQUATIC MONITORING FOR SUSTAINABLE DREDGING IN NORTHERN LAKES OF EGYPT
- Funded by the Ministry of Foreign Affairs Finland
- Project duration 2017-2018, possible extension to 2019
- Partners: Finnish Environment Institute (SYKE) and General Authority for Fish Resources Development (GAFRD) in Egypt

Goals

- To strengthen the monitoring and prediction capacity of GAFRD
- To assess the environmental impacts of dredging
- To evaluate improvement of water exchange (sea water intrusion)
- To define consequent impacts on fish population and determinate the follow-up of possible release of hazardous substances accumulated in the sediments
- The aim of these assignments is to improve the environmental status of the lakes in an environmentally and socially sustainable manner

Irrigated land

MEDITERRANEAN SEA

Sketch of the system of barrages and main canals along the Nile. Not to scale

•MoMa-project is closely related to an investment project, where Finland supports GARFD to purchase WaterMaster dredgers by Aquamec

•Wbesite: http://www.watermaster.fi/

Key questions for finding optimal solution in dredging

- Balance between
 - Improving water exchange, water quality and space for fish production
 - Effective use of labor time and machinery
 - Harmful effects for aquatic life during the operation and in long time perspective
- Optimal timing: season, time of day
- Sites: where to operate
- Way of operation: all dredgers in same area or they are distributed??
- Solution: Monitoring and modelling
- Model used for planning the dredging activities
- Monitoring used for data collection and validating the model