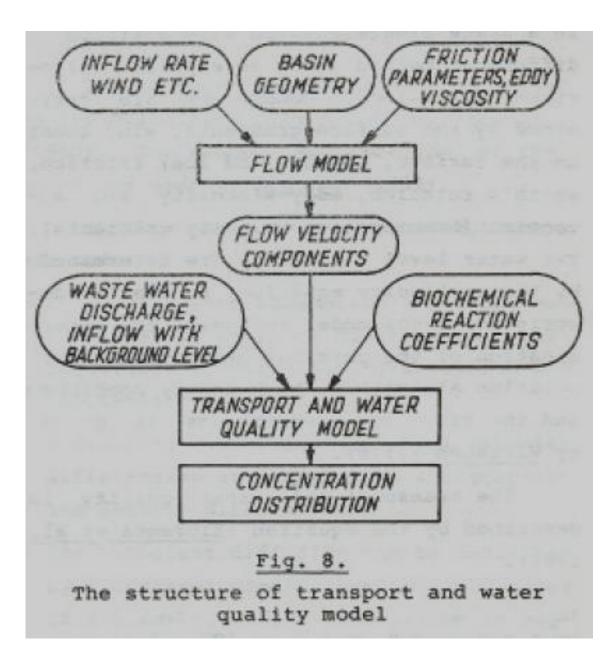
#### Modeling in aquatic environment


Lecture 8

Water quality models

Timo Huttula

Timo.huttula@environment.fi

http://www.ymparisto.fi/syke/jyvaskyla



# Concentration equation in general form

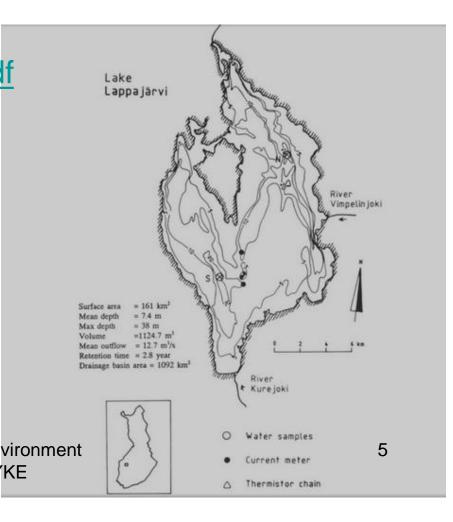
$$\begin{aligned} \frac{\partial c}{\partial t} &= \frac{\partial qL}{\partial n} - u \frac{\partial c}{\partial x} - v \frac{\partial c}{\partial y} - (w - w_{s1}) \frac{\partial c}{\partial z} \\ &+ \frac{\partial c}{\partial x} (D_x \frac{\partial c}{\partial x}) + \frac{\partial c}{\partial y} (D_y \frac{\partial c}{\partial y}) + \frac{\partial c}{\partial z} (D_z \frac{\partial c}{\partial z}) \\ &+ R(T, c...) \end{aligned}$$

where,

- c = concentration of simulated substance, qL= amount of loading release , n= length measure against release, u,v,w = advective velocity components in x-, y- ja z- directions,  $w_{s1}$  or  $w_s$  = settling velocity in the case of suspended solids, for soluble substances some value of  $w_{s1}$  is calibrated (!) ,  $D_x$ ,  $D_y$ ,  $D_z$  = dispersion coefficients, R(T,c) = biogeochemical changes in substance concentration

11/28/2016

## Application of WQ-models


- We include :
  - Advection
  - Dispersion
  - Settling in water column and deposition on the bottom
- Bio- chemical processes
  - Decomposition, respiration, aeration, anaerobic release of P from the bottom
  - Select the most important variables concerning the problem
  - Oxygen, nutrients (like P,N), chlorophyll-a and some conservative substance (like Na)
  - Limiting factors (light, nutrients, ...) must be included
  - Temperature corrections must be included

## Lake Lappajärvi WQ-model

(Malve et al. 1991)

- PROBE temperature model
  - <u>Materials\Effects of Climate Change....pdf</u>
- PROBE-WQ model
  - Materials\Lappajarvi\_WQ.pdf





#### Oxygen model

**Computation** of **dissolved oxygen** Both **abiotic** and biotic factors affect the concentration of oxygen. The change of dissolved oxygen concentration as a function of time is described by the following equation':

$$\frac{do_2}{dt} = K' \times \sqrt{W} \times (O_{2sat} - O_2) - K_1 \times BOd_7 \times BRAT + \mu \times \alpha_1 \times CH - r \times \alpha_2 \times CH$$

$$= \frac{SOD \times AREA}{V}$$
(7)

**K** = aeration constant = 2.0 •  $10^{-4}$  cm/d, W = wind speed, z = layer thickness  $0_{2eff}$  = dissolved oxygen saturation concentration at the surface layer temperature  $0_2$  = dissolved oxygen concentration at the surface layer temperature **K**<sub>1</sub> = BOD decay rate = 0.1 l/d (function of temperature, f(T)) BOD, = **BOD**<sub>7</sub> concentration BRAT = **BOD/BOD**<sub>7</sub> = 1.5  $\alpha_1, \alpha_2$  = stoichiometric coefficients for growth and respiration= 0.1903  $\mu$  = growth rate of algae r = algal respiration coefficient = 0.065 **1/d**, (f(T)) CH = chlorophyll concentration SOD = bottom sediment oxygen demand, (f(T)) AREA = area of the bottom sediment V = volume of the water body

11/2: The first term on the right hand side describes aeration in the surface layer, the second one biological oxygen demand, the third and fourth ones phytoplankton growth and respiration, and the last one bottom sediment oxygen demand.

#### Phytoplankton biomass and ToTP

**Computation** of phytoplankton biomass Chlorophyll-a concentration is used as a relative measure of phytoplankton biomass. The rate of change of phytoplankton biomass is expressed as [8]

$$\frac{dCH}{dt} = \mu \times CH - r \times CH - \frac{SED}{h} \times CH$$
(8)

Phosphorus cycle Description of the phosphorus cycle is quite simple. Total phosphorus concentration in the lake is affected by external loading, phosphorus sedimentation and release of phosphorus under unaerobic conditions.

The change of total phosphorus concentration as a function of time is described by the following equation [8]

$$\frac{dTOTP}{dt} = -\frac{SEDP}{h} \times (TOTP)^{2} + LOAD + \frac{RELEASE}{AREA \times h}$$
(11)

SEDP = net phosphorus sedimentation coeffkient = 0.002  $(m/d)/(\mu g/l)$ . LOAD = external loading

RELEASE = rate of phosphorus release from the sediment under anaerobic conditions

11/28/2016

#### Huttula Finnish Environment Institute, SYKE

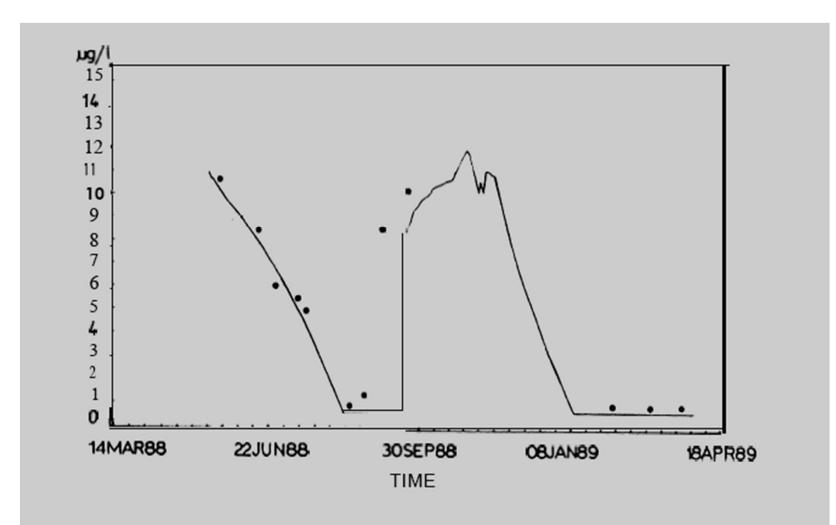



Figure 7. Observed (.) and calculated (-) oxygen concentrations in bottom layer (height 1 m). Calibration, summer 1988.

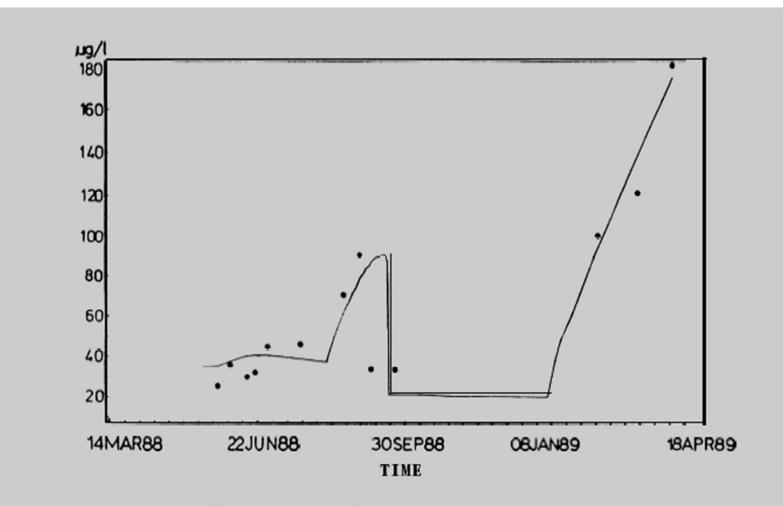
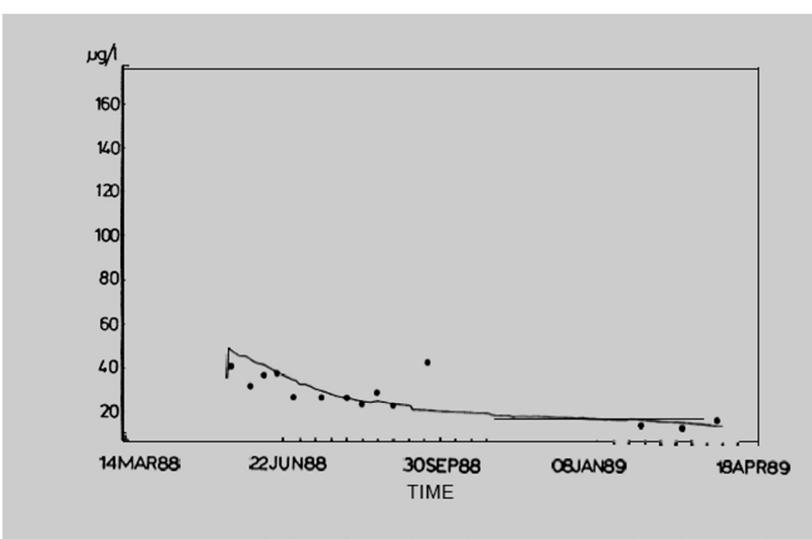
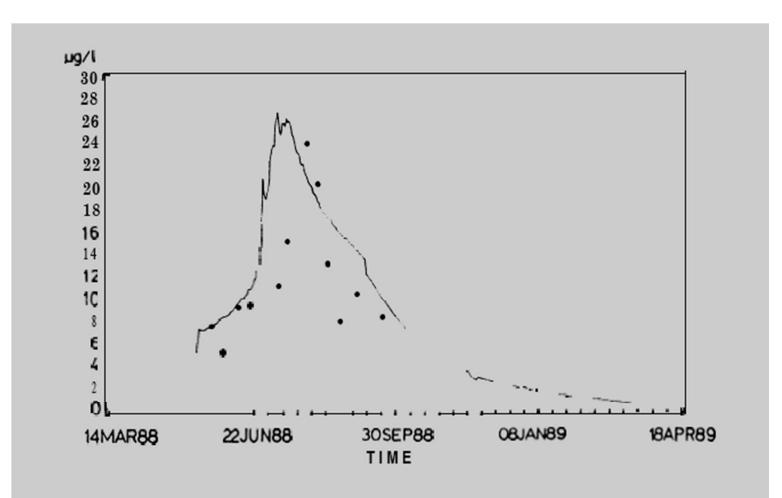
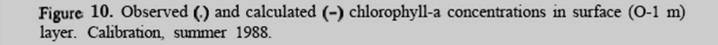
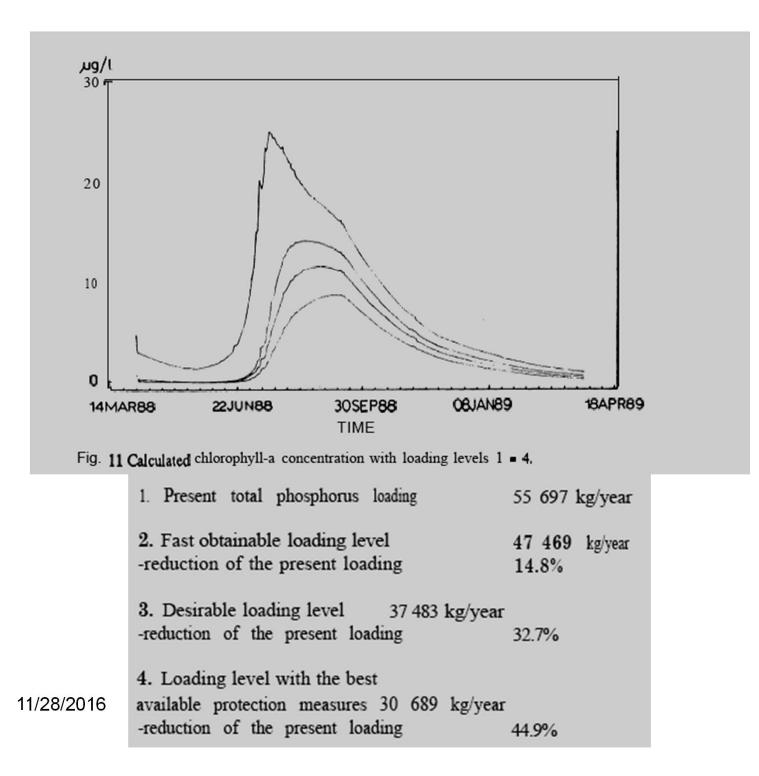
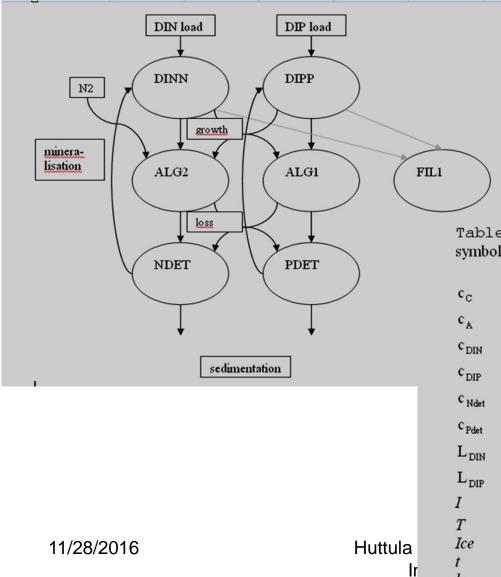



Figure 8. Observed (.) and calculated (-) total phosphorus concentrations in bottom layer (height 1 m). Calibration, summer 1988.



Figure 9. Observed (.) and calculated (-) total phosphorus concentrations in surface (O-1 m) layer. Calibration, summer 1988.







#### Interactions in EIA-SYKE-model



DIP=dissolved inorganic P
DIN=dissolved inorganic N
Detritus= 'dead' particulate organic material in water

| Table<br>symbol   | 1. Model variables.<br>definition       | unit                         |
|-------------------|-----------------------------------------|------------------------------|
| c <sub>c</sub>    | Biomass of cyanobacteria (wet weight)   | g m-2                        |
| c <sub>A</sub>    | Biomass of the other algae (wet weight) | g m-2                        |
| $c_{\text{DIN}}$  | DIN concentration                       | mg m <sup>-3</sup>           |
| c <sub>DIP</sub>  | DIP concentration                       | mg m <sup>-3</sup>           |
| c <sub>Ndet</sub> | Detritus nitrogen                       | $\mathrm{mg}\mathrm{m}^{-3}$ |
| C Pdet            | Detritus phosphorus                     | $\mathrm{mg}\mathrm{m}^{-3}$ |
| $L_{\text{DIN}}$  | DIN load                                | mg m-3 d-1                   |
| L <sub>DIP</sub>  | DIP load                                | mg m-3 d-1                   |
| Ι                 | Total radiation                         | $MJ m^{-2}d^{-1}$            |
| Т                 | Temperature                             | 0 C                          |
| Ice               | Ice-cover (0,1)                         | -                            |
| t                 | Time                                    | d                            |
| h                 | Depth of grid cell                      | m                            |
|                   |                                         |                              |

| Table<br>Symbol  | 2. Model parameters<br>definition                            | reference                  | value   | unit                               |
|------------------|--------------------------------------------------------------|----------------------------|---------|------------------------------------|
| $N_{inC}$        | Nitrogen in cyanobacteria                                    | Redfield, 1958             | 0.0193  |                                    |
| Pinc             | Phosphorus in cyanobacteria                                  | Redfield, 1958             | 0.00268 |                                    |
| $N_{inA}$        | Nitrogen in the other algae                                  | Redfield, 1958             | 0.0193  |                                    |
| PinA             | Phosphorus in the other algae                                | Redfield, 1958             | 0.00268 | -                                  |
| $\mu_{Cmax}$     | Maximal growth rate of cyanobacteria                         | calibration                | 0.5     | d-1                                |
| $\mu_{Amax}$     | Maximal growth rate of the other algae                       | Olli et al., 1996          | 0.7     | d-1                                |
| R Canace         | Maximum loss rate of cyanobacteria                           | calibration                | 0.1     | d-1                                |
| R Amax           | Maximum loss rate of the other algae                         | calibration                | 0.15    | d-1                                |
| K NC             | Half-saturation coefficient of DIN for cyanobacteria         | Tyrrell, 1999              | 0       | mg m <sup>-3</sup>                 |
| K <sub>PC</sub>  | Half-saturation coefficient of DIP for cyanobacteria         | Kononen & Leppänen, 1997   | 2       | mg m <sup>-3</sup>                 |
| K <sub>na</sub>  | Half-saturation coefficient of DIN for the other algae       | calibration                | 7       | mg m <sup>-3</sup>                 |
| K <sub>PA</sub>  | Half-saturation coefficient of DIP for the other algae       | calibration                | 1       | mg m <sup>-3</sup>                 |
| Кıc              | Half saturation coefficient of radiation for cyanobacteria   | calibration                | 20      | MJ m <sup>-2</sup> d <sup>-1</sup> |
| K <sub>la</sub>  | Half saturation coefficient of radiation for the other algae | calibration                | 15      | MJ m <sup>-2</sup> d <sup>-1</sup> |
| $C_{\min}$       | Minimum biomass of cyanobacteria                             | calibration                | 0.5     | g m <sup>-2</sup>                  |
| Amin             | Minimum biomass of the other algae                           | calibration                | 0.01    | g m <sup>-2</sup>                  |
| Amax             | Maximum total biomass of algae                               | calibration                | 300     | g m <sup>-2</sup>                  |
| $\beta_0$        | Maximal detritus nitrogen mineralisation rate                | Garber, 1984               | 0.018   | d-1                                |
| Yo               | Maximal detritus phosphorus mineralisation rate              | Garber, 1984               | 0.043   | d-1                                |
| $\nu_{N\rm det}$ | Settling rate of detritus nitrogen                           | Heiskanen & Tallberg, 1999 | 1       | m d <sup>-1</sup>                  |
|                  |                                                              | КН                         |         |                                    |

4

| VNdet             | Settling rate of detritus nitrogen          | Heiskanen & Tallberg, 1999 | 1     | m d-1             |
|-------------------|---------------------------------------------|----------------------------|-------|-------------------|
| $\nu_{Pdet}$      | Settling rate of detritus phosphorus        | Heiskanen & Tallberg, 1999 | 1     | m d <sup>-1</sup> |
| S <sub>Ndet</sub> | Sedimentation rate of detritus nitrogen     | calibration                | 0.16  | m d <sup>-1</sup> |
| Spdet             | Sedimentation rate of detritus phosphorus   | Lehtoranta, 1998           | 0.00  | m d <sup>-1</sup> |
| Topt              | Optimal temperature                         |                            |       |                   |
|                   | for the growth of cyanobacteria             | Kononen & Leppänen, 1997   | 25    | °C                |
|                   | for the growth of the other algae           | calibration                | 15    | °C                |
|                   | for losses                                  | calibration                | 25    | ٥C                |
|                   | for detritus nitrogen mineralisation        | Garber, 1984               | 18    | °C                |
|                   | for detritus phosphorus mineralisation      | Garber, 1984               | 18    | °C                |
| а <sub>т</sub>    | Coefficient for temperature limiting factor |                            |       |                   |
| -                 | for the growth of cyanobacteria             | calibration                | 1.14  |                   |
|                   | for the growth of the other algae           | calibration                | 1.001 | •                 |
|                   | for losses                                  | calibration                | 1.05  | -                 |
|                   | for detritus nitrogen mineralisation        | Garber, 1984               | 1.31  | -                 |
|                   | for detritus phosphorus mineralisation      | Garber, 1984               | 1.60  | -                 |
| I <sub>red</sub>  | Radiation attenuation by ice                | calibration                | 0.5   |                   |
| $h_{mix}$         | Depth of mixing layer                       | calibration                | 20    | m                 |
|                   |                                             |                            |       |                   |

#### Table 3. Model equations, rates and limiting factors.

Equations

$$\frac{\partial c_c}{\partial t} = (\mu_c - R_c)c_c \tag{1}$$

$$\frac{\partial c_A}{\partial t} = (\mu_A - R_A)c_A \tag{2}$$

$$\frac{\partial c_{DIN}}{\partial t} = \beta c_{NDet} - \mu_A N_{inA} c_A h_{mix}^{-1} - \mu_C N_{inC} c_C h_{mix}^{-1} + L_{DIN}$$
(3)

$$\frac{\partial c_{DIP}}{\partial t} = \gamma c_{Pdm} - \mu_A P_{inA} c_A h_{mix}^{-1} - \mu_C P_{inC} c_C h_{mix}^{-1} + L_{DIP}$$
(4)

$$\frac{\partial \mathcal{C}_{Ndet}}{\partial t} = N_{inA} R_A c_A h_{mix}^{-1} + N_{inC} R_C c_C h_{mix}^{-1} - \beta c_{Ndet} - \nu_{Ndet} c_{Ndet} h^{-1} - S_{Ndet} c_{Ndet} h^{-1}$$
(5)

$$\frac{\partial \mathcal{C}_{Pdet}}{\partial t} = P_{inA} R_A \mathcal{C}_A h_{mix}^{-1} + P_{inC} R_C \mathcal{C}_C h_{mix}^{-1} - \mathcal{C}_{Pdet} - \nu_{Pdet} \mathcal{C}_{Pdet} h^{-1} - S_{Pdet} \mathcal{C}_{Pdet} h^{-1}$$
(6)

$$\mu_{C} = \mu_{C_{\rm INNC}} f_{CN}(c_{D_{\rm IN}}, c_{D_{\rm IP}}) f_{CI}(I) f(T) f_{AC}(c_{A}, c_{C})$$
(7)

$$\mu_{A} = \mu_{Amax} f_{AN}(c_{DIN}, c_{DIP}) f_{AI}(I) f(T) f_{AC}(c_{A}, c_{C})$$
(8)

$$R_{C} = \mathbb{R}_{\text{Cmax}} f(T) (c_{C} - C_{\min}) / c_{C}$$
(9)

$$R_{A} = \mathbb{R}_{A\max} f(T) (c_{A} - A_{\min}) / c_{A}$$
<sup>(10)</sup>

$$\beta = \beta_0 f(T) \tag{11}$$

$$\gamma = \gamma_0 f(T) \tag{12}$$

Limiting factors

-

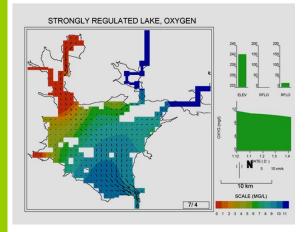
-

$$f_{CN}(c_{DN}, c_{DP}) = \frac{c_{DN}}{c_{DN} + K_{NC}} \frac{c_{DP}}{c_{DP} + K_{PC}}$$
(13)

$$f_{AN}(c_{DN}, c_{DP}) = \frac{c_{DN}}{c_{DN} + K_{NA}} \frac{c_{DP}}{c_{DP} + K_{PA}}$$
(14)

$$f(T) = \exp\left[\int_{T_{opt}}^{T} \ln \theta dT\right], \text{ where } \theta = a_T + (1 - a_T)T/T_{opt}$$
(15)

$$f_{CI}(l) = \frac{l(1 - lcel_{red})}{l(1 - lcel_{red}) + K_{W}}$$
(16)


$$f_{AI}(I) = \frac{l(1 - lcel_{red})}{l(1 - lcel_{red}) + K_{IA}}$$
(17)

$$f_{AC}(c_A, c_C) = 1 - \frac{c_A + c_C}{A_{\max}}$$
(18)

11/28/2016

## Summary of WQ-model calculations

- Check that you have data to describe WQ in variable discharge and loading conditions
- Select those properties (variables), which describe best the effects of loading and concentrate calibration on them
- Use most simple parameterization of the variables
- First coefficient values from literature and by experience
- Compare the calculated and observed values of the selected variables
- Calibrate model tuning parameter values
- Select the conditions/scenarios (weather, discharge and loading) during which the effects are described ....and run the model!!

