Okayama University

LANGUAGE
JAPANESECHINESE
MENU

Okayama University Medical Research Updates (OU-MRU) Vol.77

March 05, 2020

Source: Okayama University (JAPAN), Public Relations Division
For immediate release: 05 March 2020
Okayama University research: Green leafy vegetables contain a compound which can fight cancer cells

(Okayama, 05 March) In a study recently published in Scientific Reports scientists at Okayama University describe how an ingredient of cruciferous vegetables prevents the growth of cancer cells.

Cruciferous vegetables like broccoli, cauliflower, and cabbage are rich in a class of compounds called ‘isothiocyanates’. A key member of this class, benzyl isothiocyanate (BITC), effectively prevents the growth of tumors in laboratory rats and mice. However, the exact mechanism behind its ability to do so is still unknown. A research team spearheaded by Professor NAKAMURA Yoshimasa and Associate Professor MORIYA Hisao at Okayama University recently used yeast cells to explain how BITC can abate the development of cancer.

Yeast cells make a convenient experimental model as they are easy to manipulate, and they share a significant amount of their genetic make-up with mammalian cells. Thus, discoveries made in yeast cells can often be translated to human cells. The team first treated yeast cells with different concentrations of BITC and found that higher concentrations of BITC suppressed the growth of the cells. An optimum concentration that could suppress the growth of yeast cells to an easily measurable extent was chosen.

Next, a battery of genes within the cells was screened to find candidates that may be altered upon exposure to BITC. Twelve genes were found to be potentially involved. The researchers then artificially enhanced the levels of these twelve genes and observed that the yeast cells subsequently developed a resistance to BITC-induced death. To further understand how the effects of BITC might be associated with these genes, one such gene was analyzed in detail—the MTW1 gene.

The MTW1 gene is responsible for producing a protein in yeast cells which is very similar in functionality as well as genetic sequence to Mis12, a protein found in human cells. Human colon cancer cells were then employed to see if BITC treatment affected the Mis12 protein. Indeed, an artificial reduction in Mis12 levels enhanced the cancer-killing effects of BITC whereas an increase in Mis12 levels protected the cells from death. What’s more, BITC directly reduced the amount of Mis12 by channeling it towards degradation. This degradation of Mis12 further sensitized the cells to apoptosis, a harsh process that leads to cellular death. The Mis12 protein was found to be the direct link between BITC and cancer cell death.

“Our data indicated that the proteasome-dependent decrease in Mis12…enhances the BITC-induced apoptosis, which contributes to the suppression of cancer cell proliferation by BITC”, concludes the team. This study is the first to explain the anticancer properties of BITC in detail, using a novel screening system within yeast cells. This system can be used in the future for screening other anticancer drugs.

Background
BITC: Benzyl isothiocyanate (BITC) is an organic compound present naturally in several plants and vegetables. Experiments in rodent models have shown the ability of BITC to reduce ovarian, lung, and bladder tumors. Researchers have long been analyzing these properties of BITC in an attempt to understand how it fights cancer and the doses required for preventing tumor growth.

Yeast cells: Yeast, a type of fungi, are single-celled organisms found abundantly in nature. In spite of their simple structure, yeast cells have complex biological processes ongoing within them, many of them similar to mammalian cells. Therefore, they are often used in experiments to understand cellular processes and the effects of chemicals or drugs better.

Reference
Naomi Abe-Kanoh, Narumi Kunisue, Takumi Myojin, Ayako Chino, Shintaro Munemasa, Yoshiyuki Murata, Ayano Satoh, Hisao Moriya & Yoshimasa Nakamura. Yeast screening system reveals the inhibitory mechanism of cancer cell proliferation by benzyl isothiocyanate through down-regulation of Mis12. Scientific Reports, 2019 Jun 20;9(1):8866.
DOI : 10.1038/s41598-019-45248-2.
Yeast screening system reveals the inhibitory mechanism of cancer cell proliferation by benzyl isothiocyanate through down-regulation of Mis12 | Scientific Reports

Correspondence to
Professor NAKAMURA Yoshimasa, Ph.D.
Department of Food Biochemistry,
Graduate School of Environmental and Life Science,
Okayama University, 1-1-1 Tsushimanaka, Kita-ku,
Okayama 700-8530, Japan
E-mail: yossan(a)okayama-u.ac.jp
For inquiries, please contact us by replacing (a) with the @ mark.
https://yossan24okayama.jimdofree.com/

Further information
Okayama University
1-1-1 Tsushima-naka , Kita-ku , Okayama 700-8530, Japan
Public Relations Division
E-mail: www-adm(a)adm.okayama-u.ac.jp
For inquiries, please contact us by replacing (a) with the @ mark.

Website: //www.okayama-u.ac.jp/index_e.html
Okayama Univ. e-Bulletin: //www.okayama-u.ac.jp/user/kouhou/ebulletin/
We love OKAYAMA UNIVERSITY: https://www.youtube.com/watch?v=7cXlttQIk3E
Okayama University Image Movie(2018)
https://www.youtube.com/watch?v=WmyqOTuigBs


Okayama University Medical Research Updates (OU-MRU)
The whole volume : OU-MRU (1- )
Vol.1:Innovative non-invasive ‘liquid biopsy’ method to capture circulating tumor cells from blood samples for genetic testing
Vol.2:Ensuring a cool recovery from cardiac arrest
Vol.3:Organ regeneration research leaps forward
Vol.4:Cardiac mechanosensitive integrator
Vol.5:Cell injections get to the heart of congenital defects
Vol.6:Fourth key molecule identified in bone development
Vol.7:Anticancer virus solution provides an alternative to surgery
Vol.8:Light-responsive dye stimulates sight in genetically blind patients
Vol.9:Diabetes drug helps towards immunity against cancer
Vol.10:Enzyme-inhibitors treat drug-resistant epilepsy
Vol.11:Compound-protein combination shows promise for arthritis treatment
Vol.12:Molecular features of the circadian clock system in fruit flies
Vol.13:Peptide directs artificial tissue growth
Vol.14:Simplified boron compound may treat brain tumours
Vol.15:Metamaterial absorbers for infrared inspection technologies
Vol.16:Epigenetics research traces how crickets restore lost limbs
Vol.17:Cell research shows pathway for suppressing hepatitis B virus
Vol.18:Therapeutic protein targets liver disease
Vol.19:Study links signalling protein to osteoarthritis
Vol.20:Lack of enzyme promotes fatty liver disease in thin patients
Vol.21:Combined gene transduction and light therapy targets gastric cancer
Vol.22:Medical supportive device for hemodialysis catheter puncture
Vol.23:Development of low cost oral inactivated vaccines for dysentery
Vol.24:Sticky molecules to tackle obesity and diabetes
Vol.25:Self-administered aroma foot massage may reduce symptoms of anxiety
Vol.26:Protein for preventing heart failure
Vol.27:Keeping cells in shape to fight sepsis
Vol.28:Viral-based therapy for bone cancer
Vol.29:Photoreactive compound allows protein synthesis control with light
Vol.30:Cancer stem cells’ role in tumor growth revealed
Vol.31:Prevention of RNA virus replication
Vol.32:Enzyme target for slowing bladder cancer invasion
Vol.33:Attacking tumors from the inside
Vol.34:Novel mouse model for studying pancreatic cancer
Vol.35:Potential cause of Lafora disease revealed
Vol.36:Overloading of protein localization triggers cellular defects
Vol.37:Protein dosage compensation mechanism unravelled
Vol.38:Bioengineered tooth restoration in a large mammal
Vol.39:Successful test of retinal prosthesis implanted in rats
Vol.40:Antibodies prolong seizure latency in epileptic mice
Vol.41:Inorganic biomaterials for soft-tissue adhesion
Vol.42:Potential drug for treating chronic pain with few side effects
Vol.43:Potential origin of cancer-associated cells revealed
Vol.44:Protection from plant extracts
Vol.45:Link between biological-clock disturbance and brain dysfunction uncovered
Vol.46:New method for suppressing lung cancer oncogene
Vol.47:Candidate genes for eye misalignment identified
Vol.48:Nanotechnology-based approach to cancer virotherapy
Vol.49:Cell membrane as material for bone formation
Vol.50:Iron removal as a potential cancer therapy
Vol.51:Potential of 3D nanoenvironments for experimental cancer
Vol.52:A protein found on the surface of cells plays an integral role in tumor growth and sustenance
Vol.53:Successful implantation and testing of retinal prosthesis in monkey eyes with retinal degeneration
Vol.54:Measuring ion concentration in solutions for clinical and environmental research
Vol.55:Diabetic kidney disease: new biomarkers improve the prediction of the renal prognosis
Vol.56:New device for assisting accurate hemodialysis catheter placement
Vol.57:Possible link between excess chewing muscle activity and dental disease
Vol.58:Insights into mechanisms governing the resistance to the anti-cancer medication cetuximab
Vol.59:Role of commensal flora in periodontal immune response investigated
Vol.60:Role of commensal microbiota in bone remodeling
Vol.61:Mechanical stress affects normal bone development
Vol.62:3D tissue model offers insights into treating pancreatic cancer
Vol.63:Promising biomarker for vascular disease relapse revealed
Vol.64:Inflammation in the brain enhances the side-effects of hypnotic medication
Vol.65:Game changer: How do bacteria play Tag ?
Vol.66:Is too much protein a bad thing?
Vol.67:Technology to rapidly detect cancer markers for cancer diagnosis
Vol.68:Improving the diagnosis of pancreatic cancer
Vol.69:Early gastric cancer endoscopic diagnosis system using artificial intelligence
Vol.70:Prosthetics for Retinal Stimulation
Vol.71:The nervous system can contribute to breast cancer progression
Vol.72:Synthetic compound provides fast screening for potential drugs
Vol.73:Primary intraocular lymphoma does not always spread to the central nervous system
Vol.74:Rising from the ashes—dead brain cells can be regenerated after traumatic injury
Vol.75:More than just daily supplements — herbal medicines can treat stomach disorders
Vol.76:The molecular pathogenesis of muscular dystrophy-associated cardiomyopathy

ACADEMIC YEAR