Okayama University

LANGUAGE
JAPANESECHINESE
MENU

Okayama University Medical Research Updates (OU-MRU) Vol.62

January 31, 2019

Source: Okayama University (JAPAN), Public Relations and Information Strategy
For immediate release: 31 January 2019
Okayama University research: 3D tissue model offers insights into treating pancreatic cancer

(Okayama, 31 January) Researchers at Okayama University show how specific cells of the pancreas can facilitate cancer progression.

Pancreatic cancer can be fatal. It is extremely difficult to treat partly because its precise growth mechanism is not clear. One of the characteristics of pancreatic cancer is the presence of fibrous structures or “desmoplasia” that are found in conjunction with the tumour. Scientists at Okayama University have recently clarified the structure and the mechanisms underlying the emergence of desmoplasia in pancreatic cancer.

To understand desmoplasia better it must be replicated in the laboratory. Here, the researchers first analysed desmoplasia from human samples of pancreatic cancer. Microscopy revealed that cancer cells were separated from surrounding blood vessels by fibrous desmoplasia cells. The desmoplasia layer was about 10 to 30 micrometers thick, suggesting that if a therapeutic agent were to reach cancer cells from the blood it would have to traverse this distance—a key factor determining the efficiency of drug delivery.

Next, the researchers extracted pancreatic stellate cells (PSCs) from patients to create a 3D model of desmoplasia because desmoplasia is formed of these cells. Arranging PSCs in increasing numbers quickly resulted in layers at least 10 micrometers thick, accurately mimicking the desmoplasia in pancreatic cancer. The normal function of PSCs is to secrete the extracellular matrix (ECM), which is a support system that holds cells together. The composition and organization of ECM is severely altered in the desmoplasia. This led the researchers to use their 3D model to understand how ECM changes occur and the role of PSCs with respect to these changes.

The model showed the abundance of two ECM components, Fibronectin and Collagen, just as seen in patient desmoplasia. Notably, these components also act as barriers preventing drugs from reaching cancer cells. The trigger that drives the switch between normal ECM and the aberrant ECM in desmoplasia was a major pathway mediated by a pair of proteins TGF-β/ROCK. Activation of this pathway could not only switch healthy fibrous cells into the toxic PSCs, but also result in increases of Collagen and Fibronectin. Lastly, another cancer protein, SPARC, was also found to be involved with these ECM abnormalities, further establishing its relevance to pancreatic cancer.

This was the first study to replicate a 3D model of desmoplasia in the laboratory, with relevance to clinical samples. This model successfully revealed toxic pathways that are activated in pancreatic cancer. Such a model has wide ranging implications such as deeper insights into structural and molecular aberrations that drive the disease with the possibility of discovering how to overcome the desmoplastic barrier to facilitate drug delivery to tumour cells.

This work has been carried out by a collaborative research with scientists in Tohoku University, Keio University, Osaka University, Hirosaki University, Japan Women’s University, and Toyo University.

Background
Extracellular matrix (ECM): The ECM is a scaffold made up of different biochemical components. This scaffolding network that is secreted by specific kinds of cells, functions to hold and bind cells in place and facilitate communication between them. It thus acts as an external system keeping cells healthy, strong and functioning correctly. Alterations in the ECM can lead to cellular dysfunction, such as in cancer.

Reference
Hiroyoshi Y. Tanaka, Kentaro Kitahara, Naoki Sasaki, Natsumi Nakao, Kae Sato, Hirokazu Narita, Hiroshi Shimoda, Michiya Matsusaki, Hiroshi Nishihara, Atsushi Masamune, Mitsunobu R. Kano. Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness. Biomaterials, 2019 Feb;192:355-367.
DOI: 10.1016/j.biomaterials.2018.11.023.
Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness - ScienceDirect


Correspondence to
Professor Mitsunobu Kano, M.D., Ph.D.
Department of Pharmaceutical Biomedicine,
Okayama University Graduate School of Interdisciplinary Science and
Engineering in Health Systems, 1-1-1 Tsushima-naka, Kita-Ku,
Okayama, 700-8530, Japan.
E-mail: mitkano(a)okayama-u.ac.jp
For inquiries, please contact us by replacing (a) with the @ mark.

Further information
Okayama University
1-1-1 Tsushima-naka , Kita-ku , Okayama 700-8530, Japan
Public Relations and Information Strategy
E-mail: www-adm (a) adm.okayama-u.ac.jp
For inquiries, please contact us by replacing (a) with the @ mark.
Website: //www.okayama-u.ac.jp/index_e.html
Okayama Univ. e-Bulletin: //www.okayama-u.ac.jp/user/kouhou/ebulletin/
About Okayama University (You Tube): https://www.youtube.com/watch?v=iDL1coqPRYI
Okayama University Image Movie (You Tube): https://www.youtube.com/watch?v=KU3hOIXS5kk

Okayama University Medical Research Updates (OU-MRU)
The whole volume : OU-MRU (1- )
Vol.1:Innovative non-invasive ‘liquid biopsy’ method to capture circulating tumor cells from blood samples for genetic testing
Vol.2:Ensuring a cool recovery from cardiac arrest
Vol.3:Organ regeneration research leaps forward
Vol.4:Cardiac mechanosensitive integrator
Vol.5:Cell injections get to the heart of congenital defects
Vol.6:Fourth key molecule identified in bone development
Vol.7:Anticancer virus solution provides an alternative to surgery
Vol.8:Light-responsive dye stimulates sight in genetically blind patients
Vol.9:Diabetes drug helps towards immunity against cancer
Vol.10:Enzyme-inhibitors treat drug-resistant epilepsy
Vol.11:Compound-protein combination shows promise for arthritis treatment
Vol.12:Molecular features of the circadian clock system in fruit flies
Vol.13:Peptide directs artificial tissue growth
Vol.14:Simplified boron compound may treat brain tumours
Vol.15:Metamaterial absorbers for infrared inspection technologies
Vol.16:Epigenetics research traces how crickets restore lost limbs
Vol.17:Cell research shows pathway for suppressing hepatitis B virus
Vol.18:Therapeutic protein targets liver disease
Vol.19:Study links signalling protein to osteoarthritis
Vol.20:Lack of enzyme promotes fatty liver disease in thin patients
Vol.21:Combined gene transduction and light therapy targets gastric cancer
Vol.22:Medical supportive device for hemodialysis catheter puncture
Vol.23:Development of low cost oral inactivated vaccines for dysentery
Vol.24:Sticky molecules to tackle obesity and diabetes
Vol.25:Self-administered aroma foot massage may reduce symptoms of anxiety
Vol.26:Protein for preventing heart failure
Vol.27:Keeping cells in shape to fight sepsis
Vol.28:Viral-based therapy for bone cancer
Vol.29:Photoreactive compound allows protein synthesis control with light
Vol.30:Cancer stem cells’ role in tumor growth revealed
Vol.31:Prevention of RNA virus replication
Vol.32:Enzyme target for slowing bladder cancer invasion
Vol.33:Attacking tumors from the inside
Vol.34:Novel mouse model for studying pancreatic cancer
Vol.35:Potential cause of Lafora disease revealed
Vol.36:Overloading of protein localization triggers cellular defects
Vol.37:Protein dosage compensation mechanism unravelled
Vol.38:Bioengineered tooth restoration in a large mammal
Vol.39:Successful test of retinal prosthesis implanted in rats
Vol.40:Antibodies prolong seizure latency in epileptic mice
Vol.41:Inorganic biomaterials for soft-tissue adhesion
Vol.42:Potential drug for treating chronic pain with few side effects
Vol.43:Potential origin of cancer-associated cells revealed
Vol.44:Protection from plant extracts
Vol.45:Link between biological-clock disturbance and brain dysfunction uncovered
Vol.46:New method for suppressing lung cancer oncogene
Vol.47:Candidate genes for eye misalignment identified
Vol.48:Nanotechnology-based approach to cancer virotherapy
Vol.49:Cell membrane as material for bone formation
Vol.50:Iron removal as a potential cancer therapy
Vol.51:Potential of 3D nanoenvironments for experimental cancer
Vol.52:A protein found on the surface of cells plays an integral role in tumor growth and sustenance
Vol.53:Successful implantation and testing of retinal prosthesis in monkey eyes with retinal degeneration
Vol.54:Measuring ion concentration in solutions for clinical and environmental research
Vol.55:Diabetic kidney disease: new biomarkers improve the prediction of the renal prognosis
Vol.56:New device for assisting accurate hemodialysis catheter placement
Vol.57:Possible link between excess chewing muscle activity and dental disease
Vol.58:Insights into mechanisms governing the resistance to the anti-cancer medication cetuximab
Vol.59:Role of commensal flora in periodontal immune response investigated
Vol.60:Role of commensal microbiota in bone remodeling
Vol.61:Mechanical stress affects normal bone development

ACADEMIC YEAR